Efficient Multi-Key Verifiable Shuffles from Short
Arguments for Randomized Algorithms

Benedikt Biinz, Mariana Raykova, and Jayshree Sarathy

Abstract. Verifiable shuffles are a key building block for mixnets, which are
used to provide anonymity in electronic communication, payment, and voting
systems. Existing constructions of verifiable shuffles are only able to shuffle ci-
phertexts encrypted under the same public key, which limits the functionality of
the mix-net to one-way communication. We introduce the first multi-key verifiable
shuffle, which shuffles ciphertexts encrypted under different public keys, along
with the public keys themselves. This shuffle enables a powerful, bi-directional
mixnet, which allows users to participate in a protocol even after the mixing is
complete. For instance, users can use the output of the multi-key shuffle to authen-
ticate, send, and receive private messages, and perform zero-knowledge proofs
about their ciphertexts.

We provide a zero-knowledge argument for the correctness of the multi-key shuf-
fle that has O(log(n)) proof size and O(n) prover and verifier time when shuf-
fling n k-bit elements. This improves upon the previous state-of-the-art, Bul-
letproofs (Biinz et al. S&P2018), which has O(log(knlog(n))) proof size and
O(knlog(n)) prover and verifier time.

In addition, we present an improved non-interactive zero-knowledge argument
protocol for arbitrary arithmetic circuits that inherits the short proofs and lack of
trusted setup from Bulletproofs, and additionally offers the new ability to perform
proofs on randomized algorithms, yielding concrete improvements in proof size
for the class of problems with faster randomized verification. The protocol also
enables proofs over committed vectors, which was previously not possible in a
black-box manner, and maintains zero-knowledge even under subversion of the
common reference string.

1 Introduction

The notion of a cryptographic shuffle was introduced by Chaum [1] in the context of
mix networks (mixnets), where multiple parties have messages and the goal is to out-
put these messages in a shuffled order such that they are unlinkable from the inputs. A
verifiable shuffle additionally guarantees that all inputs (and only real inputs) appear in
the output list. Mixnets are widely used in systems that require anonymity and unlinka-
bility, including anonymous communication systems [2, 3], private bulletin boards [4],
anonymous payment schemes [5-7], anonymous reputation systems [8, 9], and elec-
tronic voting schemes [10, 11]. These systems typically leverage several mixnet servers
or shufflers, each of which shuffles the inputs in turn. As the content of the inputs needs
to remain hidden during this process (otherwise, the unlinkability property cannot be
achieved), the shuffle algorithm must work with the encrypted inputs. Moreover, the
input and output ciphertexts from each shuffle cannot be identical, as this will reveal

the permutation. There are two main types of mixnets depending on how the latter is
achieved: decryption mixnets [2], where each shuffler peels off a layer of encryption,
and re-randomization mixnets [10], where each shuffler re-randomizes the input cipher-
texts before applying its permutation.

The security properties of a mixnet rely on the shuffle applied by each mix server.
While the unlinkability can be guaranteed as long as at least one of the servers acts
honestly and does not reveal its permutation, correctness requires that all mix servers
output the encryptions of the same messages that were encrypted in their input. The
goal of verifiable shuffles [10, 12-16] is to guarantee this correctness property. More
formally, a verifiable shuffle requires the shuffler to prove that two lists of ciphertexts,
cty, ..., ct, and ct}, ..., ct),, encrypt the same set messages up to a permutation, i.e. there
exists a permutation 7 € X, such that ct; and ct ;) encrypt the same message for all
i € [n].

Bi-directional Mixnet and Multi-Key Shuffle. Anonymous bulletin boards are widely
used in sensitive communication settings [2—11] to allow users to post on a public bul-
letin board without revealing their identities. Such constructions can be enabled by
decryption mixnets, where clients encrypt their messages under layers of keys corre-
sponding to the mixnet servers. However, a major limitation of anonymous bulletin
boards is that it is difficult for communications to occur beyond the initial posting on
the board.

Therefore, we consider a bi-directional mixnet, in which users are able to both send
and receive messages. For this, each message is accompanied by a message key, which
is a public key for which the sender knows the private key and using which the receiver
can encrypt a reply to the sender. Importantly, the message key is unlinkable to the
sender’s main public key and the sender’s identity. The architecture can also be used for
anonymous reputation systems [8, 9]. Users can vote on messages, and in each round
a message receives a set of scores. A user can convincingly prove that her aggregate
score over multiple rounds is within some reputable range. The mix-net ensures that the
message content and votes on that message are unlinkable to the sender’s identity and
main public key.

In order to enable this new powerful functionality we require a new notion of a
verifiable shuffle with the following capabilities. The shuffle needs to output shuffled
and randomized encrypted messages, along with a randomized public key associated
with the message. We call this a multi-key verifiable shuffle. The key difference to prior
verifiable shuffles [10, 12, 14-17] is that the messages can be encrypted under different
keys rather than just one single key.

Concretely, our new multi-key verifiable shuffle takes as inputs several ciphertexts
encrypted under different keys ct; = Enc(pky,m1),...,ct, = Enc(pky,m1) together
with their corresponding public encryption keys pk, ..., pk,,, and outputs new pairs
of ciphertexts and encryption keys {(pk},ct, = Enc(pkj, m}))}™ ; such that there ex-
ists a permutation 7 such that mj = my(;), and additionally there exists an inverse
operation of the shuffle that takes any ciphertext ct; = Enc(pk;, x) and transforms it
into a ciphertext ct; = Enc(pk;fl() x). The shuffled encryption keys enable a reader

to post responses encrypted under the corresponding key pk;, which can be shuffled

back to the author and will be encrypted under her corresponding key and only she
can read them. If the encryption scheme provides homomorphic properties, then the
responses, which can be just votes, can be first aggregated before being sent back to the
author. We could further require that the transformation between ct; = Enc(pk;-, x;r)
and ct; = Enc(pk;fl(j), x;r) preserves the encryption randomness. This enables the
anonymous sender to not only be able to decrypt the responses sent back to her, but
further to be able to provide zero-knowledge proofs for the encrypted messages in these
responses that have been recorded on the bulletin board, for example, give a range proof
for the aggregated votes that the sender received.

We present a new multi-key verifiable shuffle that can support both of the above
features.

Proofs for Randomized Functionalities Beyond Shuffles. Most verifiable shuffle proto-
cols that do not use generic zero-knowledge arguments for circuits leverage a random-
ized verification algorithm[10, 16]. This algorithm uses a representation of the shuffled
set as a polynomial whose roots are the set elements. The polynomial is invariant under
permutation of the elements. Verifying that two sets are equal becomes a polynomial
identity test for which there are efficient randomized techniques [18-20]. Our multi-key
shuffle protocol provides an argument for satisfiability of this randomized verification
algorithm. We further consider the general question of zero-knowledge arguments for
randomized functionalities, where the verifier provides challenge randomness after the
prover has committed to its witness, and we present such a protocol. This stands in
contrast to proof systems for NP-relations that are defined by a deterministic circuit for
checking the relation. Enabling randomized verification not just theoretically increases
the expressiveness of statements but can also practically lead to efficiency gains. For
example randomized primality check [21,22] is significantly more efficient than the
deterministic variant[23].

Our Contributions. We introduce a new notion of a multi-key verifiable shuffle that
extends the capabilities of existing verifiable shuffle constructions, which work only
for shuffling ciphertexts under the same key. The multi-key verifiable shuffle allows
permuting ciphertexts under different keys together with their corresponding public en-
cryption keys {pk;, Enc(pk;, m;)}. The output of the multi-key shuffle is a new set of
ciphertexts and public keys {pk;(i), Enc(pk;(i), My (;y) }, such that the ciphertexts are
encryptions of the original messages, now under the corresponding public keys included
in the shuffle output. This functionality provides enhanced communication properties
for anonymous bulletin boards.

We present a multi-key verifiable shuffle construction which provides a zero-
knowledge argument for the statements that two sets of public keys and ciphertexts,
{pk;, Enc(pk;,m;)}, and {pk), Enc(pkl ;), mn(;))}, satisfy the multi-key relation
defined above. Our construction is based on the hardness of discrete log and does not
require any trusted setup. The size of the proof is logarithmic and the prover and verifi-
cation time in linear in the size of the shuffle set.

This is the first verifiable shuffle of public keys along with ciphertexts encrypted
under these keys. Our shuffle enables users of an anonymous communication system

to participate in secure interactions even after the shuffle is complete. These interac-
tions include authenticating, sending, and receiving secure private messages, as well as
proving statements about their ciphertexts in zero-knowledge.

Our verifiable shuffle argument protocol builds upon Bulletproofs [24, 25], but yields
new functionality which we are able to generalize to arbitrary arithmetic circuits. In par-
ticular, we present a general zero-knowledge argument system that offers the following
properties.

Proofs over Vector Commitments. Bulletproofs enables proofs on Pedersen committed
values. This means that the proof circuit can directly take as input committed values
without implementing the opening function of the commitment directly. This has many
applications, such as efficient range proofs [26,27]. We significantly extend this func-
tionality such that the proof can take multiple Pedersen committed vectors as input.
These vectors could be the result of an outside protocol as is the case in the multi-key
shuffle. With this extension, the proof circuit can directly take the committed vectors as
input rather than implementing the opening function of the commitment. For m vectors
of size n the proof size is only O(y/(m) + log(m - n)).

Subversion Zero-Knowledge. We show that Bulletproofs with a simple extension sat-
isfies the notion of subversion zero-knowledge [28]. That is, even for a maliciously
generated reference string, the zero-knowledge property is preserved. In the multi-key
shuffle, we use the users’ public keys as a CRS and, thus, have to deal with a potentially
maliciously generated CRS.

Proofs for Randomized Functionalities. We extend Bulletproofs to enable proofs for
randomized functionalities with the randomness provided by the verifier. To do this,
we insert additional rounds to the Bulletproofs protocol. Using the ability to efficiently
perform proofs on vector committed values, the prover can commit to part of the verifi-
cation computation. The verifier then sends a random challenge, and the prover proves
correctness of the rest of the computation using the challenge. This can be done multiple
times.

Shuffles of Public Keys and Ciphertexts. Our protocol provides the ability to shuffle
both public keys and ciphertexts. This is significantly different from shuffling com-
mitted or encrypted values. Our shuffle does this using algebraic techniques, i.e. only
operating on the keys and ciphertexts as group elements, rather than an encoding of
the elements. This has significant efficiency benefits as implementing group operations
inside a circuit is very costly.

Efficiency. The proof system inherits the efficient properties of Bulletproofs. The proofs
are logarithmic and require no trusted setup. The proof generation and verification time
are linear in n, the witness size. Security is based on the discrete logarithm assumption.
The new ability to do proofs on randomized verification leads to a shuffle with linear
prover and verifier time, as opposed to nlog(n) for Bulletproofs’ deterministic shuffle.
Along with a concurrent work [29] (which supports only ciphertext under the same
key), we present the first logarithmic size shuffle of encrypted values. The protocol
can be made made non-interactive in the random oracle model using the Fiat-Shamir
transform [30].

Technical Overview. Existing verifiable shuffle constructions [10, 31, 15] work only
over ciphertexts encrypted under the same key. They are limited to this functionality,
because their ciphertext re-randomization techniques rely on knowledge of a single
global public key of the encryption scheme. In our setting, each ciphertext is associated
with a different public key. The shuffle has to not only permute the ciphertexts, but also
the public keys, in order to break the linkability between the original public keys and
the final output of the mixnet.

In our approach, the shuffle applies a transformation that maps all public keys to a
new set of randomized keys and re-encrypts the ciphertext under these new keys, which
guarantees unlinkability between the inputs and outputs consisting of key-ciphertext
pairs. Neff’s ‘Simple k-Shuffle’ [10], which is a building block in his shuffle of El
Gamal ciphertexts, also applies masks on the shuffled messages as we do, but the cor-
responding zero-knowledge argument of correctness requires the server to know the
shuffled messages in the clear.

Our multi-key shuffle argument leverages ideas from previous verifiable shuffles. In
particular, it uses the insight that polynomials are invariant under permutation of their
roots. Thus, we can check that two lists are permutations of each other by checking that
the polynomials they induce are equal, for which we have an efficient randomized veri-
fication algorithm based on polynomial evaluation at a random point [19, 20]. Another
technique that we borrow from previous work is probabilistic checking that two lists
contain the same elements by comparing a random linear combination of the elements
in each list.

Multi-Key Verifiable Shuffle. Our construction of the multi-key shuffle uses the addi-
tively homomorphic El Gamal encryption scheme: informally, for public generator g,
Enc(pk, m;r) = (¢, g™pk"). The shuffler must argue the following: for shuffle inputs
{(pk;,ct;)}*_, and outputs {(pk’,ct))}?_,, it knows a permutation 7 and a secret s
such that, for all i € [n], pk} = pk} ;) and ct; = ct}(;)- By the properties of additively
homomorphic El Gamal, this implies that for all i € [n], m] = s - m(;). The shuffler’s
commitment to s enables each user to compute her new public key and recover her
original message. We describe the argument protocol at a high level. First, the verifier
computes implicitly three commitments, Ag p, Ar 1, AR,c, to random linear combina-
tions of the output committed values, {z}, v/, d;}?_, with respect to public commitment
parameter g. Crucially, the verifier creates these commitments using the outputs of the
shuffle as commitment parameters, and using its random challenges 7, w.

Ay = [pkY ™ = Comy (3 a(r — u'))
App =[] etV = Comy(3"Hi(r —)
Ap.e= Hct’éfi_"’i) = Comg(z di(r —u"))

where ct = (ct} ;,ct) ;).
Now, to prove a relation between the inputs and outputs of the shuffle, the prover
must argue that Ag 5, AR 5, AR, have the correct form with respect to the inputs of the

shuffle. First, the prover computes ag = (agy, - - -, @R,), which are the committed val-
uesin Ar n, Ar.p, Ar . with respect to inputs of the shuffle as commitment parameters.
Then, the prover must argue the following three properties about ap.

L T ani = 5" TL(r — u).
Using a polynomial identity test, this shows that there exists m € X, such that ag;
contains ¢; - (r — u™ (), where ¢; is as of now unknown.

2. 3 ar; = s>, (r —ub).
Using a random linear combination check, this shows that there exists a secret s
such that for all ag;, ¢; = s.

3. ap is the committed value in Ag j, with respect to bases {pk,}™ ,, in Ag; with
respect to bases {ct; ;}7 ;, and in A . with respect to bases {ctz ;}1 ;.

We will leave the discussion of how the prover argues these properties to later in the
overview. If ap satisfies these constraints, then with high probability, each commitment
is now a commitment, under parameter g, to not only a random linear combination of
the output values, but also to a permuted random linear combination of the input values.

A = Comg(Y i(r —u™ @)
App = Comg (Y yi(r — u™ @)

AR = Comg(z di(r — u”rl(i)))

Therefore, the verifier can deduce that, with overwhelming probability, z; = s-2.(;),7; =
5 Yn(i)> and dj = s-dr;yVi € [n], for d = mj+x}7v.(;) All private keys, messages and
randomizers are therefore shifted by the same random shift s and the output ciphertext
is an encryption using the output public key and input randomizer. The latter equality
implies that s - m(;) = dj — 2 - 7r(;) = mj. Thus, we can deduce that s - m.. ;) = m;.

In order to prove the constraints on ag, our protocol will invoke a sub-routine of
Bulletproofs with modifications. Our first modification provides zero-knowledge under
subverted parameters. Note that in our shuffle argument, the commitments Ag 1, Ar b, AR,c
use the inputs of the shuffle as commitment parameters. To ensure that zero-knowledge
will hold under potentially subverted parameters, the prover must run an algorithm to
verify that the commitment parameters are valid. Our second modification arises from
using multiple vector commitments Ag j, Ar s, AR, in the shuffle proof. To incorpo-
rate these into the Bulletproofs protocol, the prover must argue that these commitments
use non-intersecting commitment parameters. The third modification is that the permu-
tation argument uses additional random challenges. We modify Bulletproofs to work for
more general randomized functionalities, using a more powerful version of the forking
lemma of Bootle et al.[24] to proof security.

These modifications are explained in more detail below in the overview of our gen-
eral zero-knowledge argument.

Comparison to Bulletproofs’ verifiable shuffle protocol. The Bulletproofs’ verifiable
shuffle protocol takes as input two lists of n commitments. It runs both lists through a

sorting circuit and checks that the outputs are equal. The proof size is O (k log(n log(n)))
(assuming the shuffled elements have k bits), and proof generation and verification runs
in O(knlog(n)) time. Using randomized verification algorithms, we are able to shuffle
multiple keys and ciphertexts, rather than just commitments, while improving the proof
size to O(log(n)) and the prover and verifier time to O(n).

Generalizing our Techniques for Arithmetic Circuits. We describe our starting point,
Bulletproofs [25], and our three major extensions. Following [24], Bulletproofs repre-
sents an arithmetic circuit with n multiplication gates (each with fan-in 2) as a Hadamard
product (entry-wise multiplication) and a set of linear constraints. For each multipli-
cation gate, let ar be the vector of left wire values, ar be the vector of right wire
values, and ap be the vector of output wires. Then, the multiplication gates can be
represented using the Hadamard product relation, ay, o ar = ap, and the rest of the
circuit, including constraints on inputs {p;}._,, can be captured using @ < 2n lin-
ear constraints of the form W -ar, + Wgr-ar + Wp -ap = Wp - p + d, for
WL, Wg, W € Z3*", and d € Z,. The last constraint is that the inputs {p;};,
must be the committed values within the [Pedersen scalar inputs commitments from the
prover, { P; = Com(p;; p;) }'_;. Thus, the arithmetic circuit is reduced to the following
constraints.

{P}._, = {Com(pi;pi)}icy A apoag=ao A
Wy-ap,+Wgr-ar+Wp-apo=Wp-p+d

Our first extension of Bulletproofs is to make the protocol more expressive by al-
lowing proofs statements not only on committed scalars, but also on committed vectors.
To the best of our knowledge, proving statements on committed vectors could not be
done previously in a black-box way.

To enable vector-committed inputs, we modify the Bulletproofs protocol as fol-
lows. Let {v;}7, be the vector-valued inputs to the circuit. The linear constraints that
describe the circuit now include constraints {Wy; }™; on the input vectors as follows.
The prover must argue that the following constraints are satisfied:

{Vitity = {Com(vi;%i) ity A {Pi}lizl = {Com(pi;pi)}izl A apoar=ap A

m
W, -ar+Wg-ap+Wo-a0+» Wy, vi=Wp p+d.
=1

Let m be the number of vector commitments, each of size n. The incorporation of
vector commitments and corresponding constraints yields polynomials /(X), 7(X), and
t(X) of degree O(m). Using the polynomial commitment scheme from [24], we incur
a cost in proof size of O(y/m) but are able to reduce input size by a factor of m.
When /m < log(m - n), we are able to provide more expressive proofs with the same
communication complexity.

Our second extension is to enable proofs for randomized verification circuits. Bul-
letproofs can only handle deterministic circuits. For these randomized circuits the ver-
ifier is able to supply randomness and the circuit computation can depend on that ran-
domness. This is powerful as many important problems such as polynomial identity

testing [19, 20], matrix multiplication [32], and primality testing [21,22] can be more
efficiently verified using randomized algorithms. Our main technique is to allow the
verifier to adaptively define the circuit. We encode a universal circuit that accepts as in-
put a set of functions, and that will evaluate the functions on the prover’s inputs and the
verifier’s random challenges. The prover begins by providing commitments to the wit-
ness as inputs to the protocol. Then, the verifier samples a random challenge ¢ € Z7,
with which, the prover and verifier can compute the randomized linear constraints of
the circuit, Wz, Wgr, Wo, {Wy;}7 ., and Wp using a set of linear functions. In
addition, using c and the witness, the prover can compute the randomized wire values
for the multiplication gates of the circuit, ar, agr, and ap. Once the constraints and wire
values are fixed, then the protocol proceeds as before. Given a randomized verification
algorithm, our argument can be used to show that with high probability, the prover’s
inputs satisfy the randomized verification. The question of whether certain random-
ized verification algorithms imply soundness for deterministic statements is outside the
scope of our general zero-knowledge argument. However, we provide an extension of
the forking lemma used in [24, 25] to show that witness-extended emulation holds even
for probabilistic circuits.

With the addition of this functionality for randomized algorithms, our proof size re-
mains logarithmic in the size of the circuit, but the circuits themselves are often signifi-
cantly smaller. Thus, we achieve concrete improvements in communication complexity
for the class of problems with more efficient randomized verification.

Our third extension is allowing the CRS to be generated by an untrusted verifier or
third-party, rather than from a trusted setup algorithm. The motivation for this comes
from the shuffle application; there, the inputs and outputs of the shuffle, which are
generated by the individual users of the bulletin board and the shuffler, are used as com-
mitment parameters for the argument protocol. In such settings, when the CRS could
be subverted, we must ensure that zero-knowledge still holds. We use the definition of
subversion zero-knowledge recently proposed by Bellare et al. [28].

To ensure subversion zero-knowledge, the prover must run an algorithm to verify
that the CRS looks honestly generated and only proceeds if the algorithm accepts the
CRS. If there exists such an algorithm, then the prover’s protocol will remain zero-
knowledge. We show that such an algorithm exists for Pedersen commitments. Note
that the prover is not allowed to subvert the CRS, and we assume that the prover does
not know a discrete log relation between the commitment parameters. Thus, soundness
is not affected by the subverted CRS.

2 Related Work

Zero-Knowledge Proofs. Zero-knowledge proofs were invented by Goldwasser et
al. [33], and later shown by Goldreich et al. [34] to exist for all languages in NP. Zero-
knowledge arguments are similar to zero-knowledge proofs, but they have computa-
tional rather than statistical soundness. Kilian [35] showed that unlike zero-knowledge
proofs, zero-knowledge arguments can be much smaller in size than the correspond-
ing witness. Many zero-knowledge arguments are based upon the discrete log assump-
tion. Schnorr presented the first such protocol [36], which was improved by Cramer

and Damgard [37] to have linear communication complexity. Groth [31], Bayer and
Groth [16] and Seo [38] have all constructed square root-size arguments. Bootle et
al. [24] used techniques in [16] to reduce the communication complexity even further.
The most efficient protocol currently is Biinz et al.’s Bulletproofs [25], which enables
log-size arguments for arithmetic circuits on committed inputs, and has applications to
range proofs, verifiable shuffles, and confidential transactions.

Some other approaches for Zero-Knowledge proofs include zk-SNARKS [39],
zk-STARKS [40], Ligero [41], Hyrax [42], and ZKBoo [43]. zk-SNARKS, or Zero-
Knowledge Succinct Non-Interactive Arguments of Knowledge [39], enable constant-
sized proofs and verification within a few milliseconds even for large programs.
However, zk-SNARKSs have significant drawbacks: they unavoidably rely on strong
non-falsifiable assumptions such as the knowledge-of-exponent assumption, use a
long and complex common reference string that requires a trusted third party or a
computationally-intensive multi-party protocol, and are prover-inefficient.

In contrast, zk-STARKS, or Zero-Knowledge Scalabale Transparent Arguments of
Knowledge [40], do not require a trusted setup and have logarithmic communication
and verification complexity. However, they require a large Fast-Fourier Transform to
make proving efficient and are thus quite memory-intensive. Hyrax [42], another varia-
tion of zk-SNARKSs, achieves sublinear proof size and verification time and linear proof
generation time. It relies on the discrete log assumption and does not require trusted
setup.

Ligero [41] is another zero-knowledge argument protocol that is lightweight and
does not require a trusted setup. Ligero enables proof size that is square-root in the
verification circuit size and linear verification time. It only requires the assumption
of collision-resistant hash functions and uses efficient symmetric-key cryptography.
Ligero improves on ZKBoo [43] and uses the same technique of ‘MPC in the Head.’

Spartan [44] is a zk-SNARK without trusted setup that only relies on standard as-
sumptions. Verifying a proof incurs sub-linear costs without additional requirements on
the structure of the circuit. However, as with all of the works described including our
own, Spartan is not able to achieve logarithmic size proofs and sub-linear prover and
verification cost at the same time.

Yun and Oleg [45] provide an implementation for Bulletproofs for adaptively-defined
arithmetic circuits using a random challenge.

Recently, Hoffman et al. [29] constructed a zero-knowledge argument for satisfiabil-
ity of a set of quadratic equations. Additionally, they identify techniques that have been
implicitly used throughout this line of work in zero-knowledge arguments, including
probabilistic verification and random linear combinations, which we employ as well.

Verifiable Shuffles. David Chaum introduced the idea of a shuffle in 1981 [1]. Sako
and Killian [46] and Abe [47-49] were the firsts to present zero-knowledge arguments
for the correctness of a shuffle. Furukawa and Sako [12] and Neff [10] concurrently pro-
posed the first linear-size arguments for E1 Gamal-based shuffles. Their constructions
used different approaches: Furukawa and Sako utilized permutation matrices, while
Neff relied on the invariance of polynomials under permutation of its roots. Both of
these ideas have been carried further in subsequent years: Wikstrom [14] refined the

permutation matrices approach, while Groth and Ishai [13, 15] extended the polyno-
mial invariance approach. Groth and Ishai presented the first sublinear arguments for
a shuffle. In 2012, Bayer and Groth [16] used a new multi-exponentiation argument
to produce arguments of size O(y/n), where n is the size of the lists to be shuffled. In
2017, Biinz et al [25] introduced Bulletproofs, which enable zero-knowledge arguments
that are logarithmic in the size of the circuit. For the application of verifiable shuffles,
Bulletproofs employs a sorting circuit of size O(n log(n). Our verifiable shuffle uses
a randomized polynomial identity test of circuit size O(n), yielding concrete improve-
ments in proof size. Concurrent work by Hoffman et al [29] also employs randomized
functionality to construct a O(log(n))-size verifiable shuffle argument. However, the
verifiable shuffle they consider is the traditional single-key shuffle, whereas we con-
sider a new multi-key shuffle of both keys and ciphertexts.

3 Preliminaries

3.1 Notation

We write ¢ = A(x;r) when the algorithm on input = and randomness r outputs c.
We write ¢ < A(z) to denote the process of choosing randomness 7 and setting ¢ =
A(z;7), and also write b < S to denote sampling b uniformly at random from the
set S. We will assume that one can sample uniformly at random from sets Z,, and Z.
Throughout the paper, we let G be a group of prime order p. We use bold font to denote

vectors, g = (91, ce 7gn)'

3.2 Assumptions

Let Setup be an algorithm that on input 1* returns (G, p, g) such that G is the descrip-
tion of a finite cyclic group of prime order p, where |p| = A, and g is a generator of

G.

Definition 1 (Discrete Logarithm Assumption). For all PPT adversaries A, there
exists a negligible function j1(\) such that

(G,p,g) s Setup(lk), h +sG;

Pr a<+— A(G,p,g,h):g*=h < p(N)

In this definition, a is called the discrete logarithm of h with respect to base g. It is well
known that the discrete log assumption is equivalent to the following assumption.

Definition 2 (Discrete Log Relation). For all PPT adversaries A and for all n > 2
there exists a negligible function (1(\) such that

G = Setup(1*), g1 . .. gn +sG;
r) <
Pr [al...an €Ly + AG,g1,...,9n) 1 Fa; ZOAT] g% =1 < nA)

The Discrete Logarithm Relation assumption states that it is infeasible for an adversary
to find a non-trivial discrete log relation between randomly chosen group elements,

where a non-trivial relation between g1, ..., g, is [[, g7 = 1.

10

3.3 Commitments

A non-interactive commitment scheme allows a sender to commit to a secret value by
sending a commitment. Later, the sender may open the commitment and reveal the
value in a verifiable manner. A commitment has two security properties: it should hide
the secret value (hiding), and the sender should be able to open the commitment to only
one value (binding).

Definition 3 (Commitment). A non-interactive commitment scheme consists of a pair
of probabilistic polynomial time algorithms (Setup, Com). The setup algorithm Setup(1*)
generates public parameters pp for the scheme for security parameter \. The commit-
ment algorithm Comp,, defines a function My, X Ryy — Cpp for message space My,
randomness space Ry, and commitment space Cy, determined by pp. For a message
x € My, the algorithm draws r <—s R, uniformly at random, and computes a commit-
ment, C' = Compy(z; 7).

Definition 4 (Perfectly Hiding). A non-interactive commitment scheme (Setup, Com)
is perfectly hiding if for all PPT interactive adversaries A,

pr| PP Setup(1?), (mg, m1) +s.A(pp), 1
b<s{0,1},7 <=5 Rpp, C = Compp(my; 1) : A(C) =b 2
where mqg, my € Mpyp.

Definition 5 (Computationally Binding). A non-interactive commitment scheme is
computationally binding if for all PPT interactive adversaries A,

pp s Setup(1*), (mo, m1,70,71) +s.A(pp) :}
P < u(A
r [Compp(mo;ro) = Compp(ma;r1) Amg #my | — 1)

where mg, my € My, and rg, 71 € Rpp.

Definition 6 (Homomorphic Commitments). A homomorphic commitment scheme is
a non-interactive commitment scheme such that My, Ry, and Cpy, are all abelian
groups, and for all x1,x2 € Myp, 71,72 € Ry,

Compp(z1;71) + Compp(z2;72) = Compp (21 + 22571 + 12)

The Pedersen commitment scheme is a prominent instantiation of a homomor-
phic, perfectly hiding commitment scheme. We distinguish between the usual Pedersen
scheme for commitments of single values, which we call Pedersen scalar commitments,
and a variant that allows us to commit to multiple values at once, which we call Peder-
sen vector commitments.

Definition 7 (Pedersen Scalar Commitment). For a Pedersen scalar commitment, let
Mpp, Rop = Z,, Cpp = G of order p, and define (Setup, Com) as follows.

Setup: g,h +sG
Compp(z;7) = (g°R")

11

Definition 8 (Pedersen Vector Commitment). For a Pedersen vector commitment, let
My, = Zyy, Rpp = Zyp, Cpp = G of order p, and define (Setup, Com) as follows.

Setup:g=(g1,-.-,9n),h<sG Compp(x = (21,...,2n);T) = hTHgf”' eG
i=1

Pedersen scalar and vector commitments are homomorphic, perfectly hiding, and com-
putationally binding under the discrete log and discrete log relation assumptions, re-
spectively. In our constructions, we will rely on specific properties of the Pedersen
schemes.

3.4 Zero-Knowledge Arguments of Knowledge

A zero-knowledge proof is a protocol by which a prover convinces a verifier that some
statement holds without revealing the witness for the statement. The protocol is an
argument rather than a proof if the prover is computationally bounded and some com-
putational hardness assumptions are used.

We will consider arguments consisting of three interactive algorithms, (Setup, P, V),
all running in probabilistic polynomial time. These are the common reference string
generator Setup, the prover P, and the verifier V. On input 1%, algorithm Setup pro-
duces a common reference string o. The transcript produced by P and ¥ when inter-
acting on inputs s and ¢ is denoted by tr < (P(s), V(t)). We write (P(s),V(t)) = b
depending on whether the verifier rejects, b = 0, or accepts, b = 1. Let R C {0,1}* x
{0,1}* x {0, 1}* be a polynomial-time ternary relation. Given o, we call w a witness
for a statement u if (o, u, w) € R, and define the CRS-dependent language

Ly={z|3w : (o,z,w) € R}
as the set of statements x that have a witness w in the relation R.

Definition 9 (Argument of Knowledge). The triple (Setup, P, V) is an argument of
knowledge for a relation R if it has perfect completeness and computational witness-
extended emulation, both defined below.

Definition 10 (Public Coin). An argument of knowledge (Setup, P, V) is called public
coin if all messages sent from the verifier to the prover are chosen uniformly at random
and independently of the prover’s messages. In other words, the challenges correspond
only to the verifier’s randomness p.

Definition 11 (Perfect Completeness). (Setup, P, V) has perfect completeness if for
all non-uniform polynomial time adversaries A

Pl(o,u,w) ¢ R or (P(o,u,w),V(o,u)) =1

o+ Setup(1*) | 1
(u,w) < A(o) | —

where the or is exclusive.

12

The standard argument of knowledge definition of Bellare and Goldreich demands that
a witness be extracted for all sufficiently long inputs. It cannot be used when the public
keys are generated before the argument of knowledge (CRS model). This is because
there is a nonzero probability that a cheating prover can compute a trapdoor from the
public keys, so the prover could create common inputs (such as commitments using the
public keys) for which it may be impossible to extract a witness.

Thus, to define an argument of knowledge, we use the notion of computational
witness-extended emulation, which was used in [25]. It was also used in a statistical
sense in [24] and originated from Groth and Ishai [13], who borrowed the term witness-
extended emulation from Lindell [50].

Informally, whenever an adversary produces an argument that is accepted by the
verifier with some probability, there exists an emulator £ that produces a similar ar-
gument but also extracts a witness with almost the same probability. £ can rewind the
interaction and resume with the same internal state s for the prover, but with fresh ran-
domness for the verifier. Whenever P produces a satisfying argument in state s, £ can
extract a witness, which implies knowledge soundness.

Definition 12 (Computational Witness-Extended Emulation). (Setup, P, V) has witness-
extended emulation if for all deterministic polynomial time P* there exists an expected
polynomial time emulator £ such that for all pairs of interactive adversaries A, and

Ay, there exists a negligible function pu(X\) such that

o + Setup(1*), (u, s) < Az(0)
tr « (P*(o,u, s),V(o,u))

P [.Al(tr) =1

o + Setup(1?),
(u, s) + As(0),
(tr,w) < E9(o,u)

Ai(tr) =1
A(tr is accepting — (o,u,w) € R

where the oracle is given by O = (P*(o,u, s), V(0o,u)) and permits rewinding to
a specific point and resuming with fresh randomness for the verifier from this point
onwards. We can also define computational witness-extended emulation by restricting
to non-uniform polynomial time adversaries Ay and As.

The argument of knowledge that we build on [25] is special honest-verifier zero-
knowledge, meaning that given the verifier’s challenge values, it is possible to efficiently
simulate the entire argument without knowing the witness.

Definition 13 (Perfect Special Honest- Verifier Zero-Knowledge). A public coin ar-
gument of knowledge (Setup, P, V) is a perfect special honest verifier zero knowledge
(SHVZK) argument of knowledge for R if there exists a probabilistic polynomial time
simulator S such that for all pairs of interactive adversaries A;, Az

P {(mu,w) € Rand A;(tr) =1

o + Setup(17), (u, w, p) < Ag(a)]
tr < (P*(o,u,w), V(o,u; p))

P {(U,u,w) € Rand A;(tr) =1

o < Setup(1?), (u, w, p) < As(0)
tr < S(o,u,p)

13

In our constructions, we consider the setting in which the common reference string
(CRS) may be generated adversarially by the verifier. Our arguments provide subversion
zero-knowledge [28], which is zero-knowledge under subversion of the trusted param-
eters. Informally, the definition requires that for any adversary A5 creating a malicious
CRS, there exists a simulator S returning a simulated transcript, such that no adversary
A; can distinguish between being given a malicious CRS and simulated transcript, and
being given an honest CRS and real transcript.

Definition 14 (Subversion Zero-Knowledge). A public coin argument of knowledge
(Setup, P, V) is a subversion (perfect special honest-verifier) zero knowledge (SZK)
argument of knowledge for R if for all triples of interactive adversaries A1, Az, A3
there exists a probabilistic polynomial time simulator S such that

P [(U,u, w) € Rand A;(tr) =1

o < Setup(1?), (u, w, p) < AQ(U):|
tr < (P*(o,u,w), V(o,u; p))

P {(a,u,w) € Rand Ay (tr) =1

o A3z(1Y), (u,w, p) + Ag(o)}
tr <— S(o,u, p)

Now, we describe a simple algorithm to check whether the commitment parameters
for a Pedersen commitment scheme are valid and well-formed.

if the CRS satisfies the following conditions: G is a group of prime order, g € G
and g # 1 for all group elements g in the CRS then
| Accept;

else
‘ Reject;

end

Algorithm 1: CRSCheck
The CRSCheck algorithm is trivial, but it ensures that Pedersen commitments re-
main hiding and subversion zero-knowledge holds. This is good news;it means that we
only need a trivial algorithm to get a strong guarantee.

Lemma 1. All Pedersen commitments or Pedersen vector commitments made by the
prover using commitment parameters that pass the CRSCheck algorithm are perfectly
hiding.

We assume that the prover is not the one subverting the CRS, and that the prover
does not know a discrete log relation between the commitment parameters '. Thus,
soundness is not affected by the subverted CRS.

! In other words, our protocol assumes that there is no collusion between two or more users and
the shuffle prover. We believe there are applications where such an assumption is a better match
than the assumption of trusted setup for CRS generation, which is the existing alternative. The
work of [28] shows that we cannot achieve subversion soundness along with zero-knowledge
for any non-trivial relation, which makes our assumption necessary in an approach that relies
on user-generated parameters in the CRS. It is an interesting and non-trivial open question
whether we can match the efficiency of our current construction without using user-generated
parameters in the CRS.

14

3.5 Verifiable Shuffles

Verifiable shuffles are cryptographic protocols that permute a list of ciphertexts and
provide a zero-knowledge argument that the permutation was applied honestly. In this
section, we formally define verifiable shuffles and describe the ciphertext shuffle most
commonly seen in the literature [10]. We begin by defining a language for the shuffle
relation.

Definition 15. Suppose PKE = (Setup, KGen, Enc, Dec) is a public-key cryptosystem.
Let pp be public parameters generated by Setup(1*), pk be a public key generated by
KGen(pp), and # € X,, a permutation. L = (cty,...,ct,) and L' = (ct},...,ct,)
are two lists of ciphertexts such that for all i € [n], ct; and ct;(i) decrypt to the same
message. Then, we define a language Lo g as follows.

Leke = {(pp, pk, L, L') : 3 st. Vi, Decg.(pp, ct}) = Decq(pp; Ctr(i)) }

Next, we define correctness, verifiability, and privacy of the shuffle. As above, let
the shuffle take as input a public key pk and list of input ciphertexts L = cty,...,ct,
and outputs a list of ciphertexts L' = ct},...,ct/. The shuffle is correct if for all
i € [n], mj = Mm@, = Tx@), Deca(pp, ctj) = Dece(pp, ctr(;)). The shuffle is
verifiable if it runs an argument system to prove that the relation holds. Finally, the
shuffle is private if it is infeasible for an adaptive adversary to distinguish transcripts of
two shuffle executions that correspond to two different permutations. These properties

are defined formally below.

Definition 16 (Verifiable Shuffle). A verifiable shuffle VS is a triple,
(PKE, Shuffle, (P, V)), such that

- PKE is the public-key cryptosystem defined in Definition 15.

- Shuffle, is a probabilistic polynomial-time algorithm that takes as input public
parameters pp, a public key pk, and a list of n ciphertexts L = cty, ..., ct,, applies
the permutation m, and outputs a list of n ciphertexts L' = ct}, ... ct).

- (P, V) is an interactive argument system that, on public input (pp, pk, L, L") and
private input 7 for P, proves that (pp, pk, L, L") € Lpke. Note that the private

input to P does not include the secret key sk.

Definition 17 (Correctness). The verifiable shuffle VS = (PKE, Shuffle, (P,V)) is
correct if: whenever (pp, pk, L, L) € Lpke, (P(pp, pk, L, L'; 7), V(pp, pk, L, L)) re-
turns 1.

Definition 18 (Security). The verifiable shuffle VS = (PKE, Shuffle, (P, V)) is secure
if
- (P, V) is an argument for the language Lpkg with computational witness-extended

emulation.
— Shuffle, satisfies IND-CPAvys privacy, as defined below.

We define privacy of the shuffle using Nguyen et al.’s [51] notion of indistinguisha-
bility under chosen permutation attack (IND-CPAys security). The security game is
detailed below.

15

Definition 19 (Privacy). Let L, L’ be defined as in Definition 15, and let A be an in-
teractive adversary.

IND-CPA{s
I: pp <sSetup(1”)

pk <—s KGen(pp)

(ma,...,mn), Lm0, m1 A"E"(pp, pk)
b+s{0,1}

L' s Shuffler, (pp, pk, L)

b s A(pp, pk, L, L")

returnb =10

N U A W N

The adversary’s advantage in this game is ’P b=0V]-3 ’ We say the verifiable shuffle
has privacy if the adversary’s advantage is negligible in the security parameter \.

4 Multi-Key Verifiable Shuffle

In this section, we introduce a novel shuffle primitive and construction that enables
shuffling of public keys, along with shuffling of ciphertexts encrypted under these pub-
lic keys. We call this multi-key shuffling.

4.1 Shuffle Primitive
We begin by defining a language for the shuffle relation.

Definition 20. Suppose RPKE = (Setup, KGen, Enc, Dec, ReKey, ReEnc) is a public-
key cryptosystem with re-key and re-encryption functions. Let My, be the message
space, Ry the randomness space, and Cyy the ciphertext space determined by public
parameters pp. Let L, L' be two lists of tuples

L; = (pk;, Encpi, (mi, 7))

L; = (pk;a Encpk§ (m;7 T:))
where m; € My, m); € My, are messages and r; € Rpy, i € Ry are randomness
for the encryptions. Let m1 € X, be a permutation and s € Ry, be randomness for
the re-key and re-encryption algorithms. Then, we define a language Lrpke of tuples

(pp,pp’, L, L") such that for all i € [n), pk; = ReKey(pkﬁ(i), s) and Encpx,,, (Mr(iys Tx())

and Encyy (mj, ;) are encryptions of the same message with the same randomization.

['RPKE = {(ppv pp,7 {pkzv Encpki (pp7 mg, ri)}?zlv {pk;a Encpk; (ppv m;a T;) ?:1 : Elﬂ—v S st.
/

Via pk; = ReKGY(ppa pkﬂ'(l)? 5)3 m; = Mx@), Ty = Tr(i)>

Encei: (pp, 17, 77) = ReEncyp ok (Encok , (PP; Min(i)s Tr(i))s 8) }

16

Note that the relation presented here strictly implies the relation in Definition 15, used
for single-key verifiable shuffles. In this relation, we are constraining not only the output
plaintexts m/, but also the randomness 7 used in the output ciphertexts.

Definition 21 (Multi-Key Verifiable Shuffle). Let us assume access to RPKE and
zero-knowledge schemes. A multi-key verifiable shuffle MKS is a triple, (RPKE, Shuffle, (P, V}),
such that

- RPKE is the public-key cryptosystem with re-encrypt and re-encryption functions
defined in Definition 20.

- Shuffle, is a probabilistic polynomial-time algorithm that takes as input public
parameters pp and a list of n tuples L = {(pk,,ct;)"_,}, applies the permuta-
tion m, and outputs new public parameters pp’ and a list of n ciphertexts L =
{(pKls et

- (P,V) is an argument system that, on public input (pp,pp’, L, L) and private
input m to P, proves that (pp, pp’, L, L') € Lrpke. The private input to P does not
include the secret key sk.

MKS is correct if for all i € [n], pk; is a re-key of pk,;), and ctj and cty(; de-
crypt to the same message and have the same randomness when viewed as encryptions
under their respective public keys, pk; and Pk (s)- MKS is verifiable if the argument
system (P,V)) satisfies completeness, soundness, and zero-knowledge properties. Fi-
nally, MKS is private if it is infeasible for a probabilistic polynomial-time adversary to
distinguish transcripts of two shuffle executions that correspond to two different per-
mutations. These properties are defined formally below.

Definition 22 (Correctness). MKS = (RPKE, Shuffle, (P, V)) is correct if
(PP, pp’, L, L") € Lrpke-

Definition 23 (Security). MKS = (RPKE, Shuffle, (P, V)) is secure if

- (P, V) satisfies perfect completeness, subversion zero-knowledge, and computa-
tional witness-extended emulation.
— Shuffle, satisfies IND-CPAwks privacy, as defined below.

For privacy, we modify Nguyen et al.’s IND-CPAys notion for permutation indis-
tinguishability. Our security notion allows the adversary to select a subset of public keys
in addition to the messages and permutations. The security game for IND-CPA ks is
detailed below.

Definition 24 (Privacy). Let L, L' be defined as in Definition 20 and let A be an inter-
active adversary. The security parameter is \.

17

IND-CPAjjxs

I: pp «sSetup(1’)

T C [n] <sA(n)

Micn]» 1PK;, Cti fier, o, m1 2 Vi € T, mo (i) = m1(7) AKGE""EnC(pp)
(Pk;)igr s KGen(pp)

(cti)sgr <—s Encpk, (pp, mi)

L = {pk;,cti}icin

b+s{0,1}

pp’, L', = Shuffle,, (pp, L)

b s A(pp,pp’, L, L")

10: returnb=1"V

[\

O % N S U AW

The adversary’s advantage of winning the game is Advijd_cm’““(/\) = |P[b =] - %‘
The multi-key verifiable shuffle MKS = (RPKE, Shuffle, (P, V)) is private if, for all

interactive adversaries A,

Adv'a4Pomis (1) < negl ())

4.2 Shuffle Construction in the Discrete Log Setting

We describe our instantiation of the multi-key verifiable shuffle primitive in the dis-
crete log setting. Recall that the primitive consists of a cryptosystem RPKE, a shuffle
algorithm Shuffle, and an argument system (P, V).

We begin by describing the cryptosystem
RPKE = (Setup, KGen, Enc, Dec, ReKey, ReEnc), which is the El Gamal additively
homomorphic encryption scheme with re-key and re-encryption functions. The cryp-
tosystem is described below.

18

Setup(1*) : Decq(pp, ct) :

Return pp := (G, p,) y = cty - et
m 1= log, (y)

KGen(pp): Return m

T <3 Zp

sk = ReKey (pp, pk, s) :

pk = g* pk’ := pk®

Return (pk, sk) Return pk’

Encpi(pp, m) : ReEncpw (pp; ct, 5) :

resiy ct' == ct®

ctyi=g" B Return ct’

cty := g™ - pk’

Return ct := (cty, cto)

Note that, identical to the additively homomorphic El Gamal scheme, decryption re-
quires brute force computation of a discrete log. Typically, this is made possible by
restricting the message space such that brute force computation is feasible. In our appli-
cation, however, the holder of the secret key will always know the randomness applied
to the ciphertext, so she will be able to recover the message easily.

Next, we describe the shuffle algorithm Shuffle for our instantiation. Shuffle takes
as input (pp, L), where pp includes g, the generator for the scheme, and L is a list of
tuples, each consisting of a public key, h;, and an El Gamal additively homomorphic
ciphertext, (b;, ¢;), which is an encryption under h;, and outputs (¢’, L’), a new gener-
ator and list of tuples.

Shuffle, (pp, L):

— S¢s Z;

— Vi, hi := ReKey(pp, hr(s), 5)

- Vi, (b;, C;) = ReEnch;(pp, (bﬂ(i), Cﬂ-(i))7 S)
- L= {hj, b, c;}i,

-q¢ =g

pp' = (G,p,9')

Output (pp’, L)

The construction of the argument system (P, V) is detailed in Section 4.3.

19

Correctness. We show that (pp, pp’, L, L') € Lgrpke. First, for all 4, b/ h;() =
ReKey(hy(;), s). Next, for all 4, (b}, ¢;) = (bfr(i),cfr(i)). Therefore,

’L’Z

(bl) = (b3, 5 (0)
(o) o b))
= ({6, (g")7" ()"~
= (g% (g™ (hi)")

Thus, for all i, m; = M (), 7; = Tr(ay, and (b, ¢;) = ReEncy ((br (i), cr(s)), 5). There-

(2R

fore, (pp’, pp, L, L') € Lrpke and correctness holds.

Verifiability. Let g, ¢’ and the lists L, L’ be public inputs, and let 7, s be private inputs
to P. The discrete logarithms of any of the group elements in the lists are unknown
to the P. P must produce an argument claiming that she knows a randomizer s and a
permutation 7 such that forall 1 <7 <mn,

(hiy b3 ci) = (P iys U ays Eniay) ey

The argument system must have perfect completeness, subversion zero-knowledge, and
computational witness-extended emulation. In the next section (Section 4.3), we show
that the argument system for this shuffle satisfies these properties.

Privacy. Intuitively, the privacy of the multi-key shuffle follows from the semantic se-
curity of El Gamal encryption and the hiding property of Pedersen commitments, or
more generally, from the hardness of Decisional Diffie-Hellman (DDH).

Theorem 1. Under the DDH hardness assumption, the multi-key shuffle presented in
Section 4.2 has IND-CPA ks privacy, as defined in Definition 24.

4.3 Shuffle Argument Protocol

In Section 4.2, we introduced an instantiation of the multi-key verifiable shuffle in
the discrete log setting. We detailed the first two components of the shuffle: the cryp-
tosystem RPKE, a variation on the El Gamal additively homomorphic scheme, and the
Shuffle algorithm. In this section, we will describe the third component of the multi-key
verifiable shuffle: the argument system (P, V).

Recall that the input and output lists of the Shuffle algorithm are g, {h;, b;, ¢; }1,
and ¢', {h}, b}, c;}™ ,, where g, ¢’ are generators, h;, b} are public keys, and (b;, ¢}), (b}, ¢}
are El Gamal ciphertexts (with messages in the exponent). Thus, the argument system
(P, V) should argue knowledge of a permutation = € X, and randomness s € Z,, such
that ¢’ = ¢g° and for all ¢ € [n], b} = hfr (i) ,b; = bW(L)7 and ¢} = Cry-

Note that when we expand our notation of the pubhc keys and c1phertexts we have
that: h; = g%, b; = g%, ¢; = gmlh” and hl = g b= gl = =9 mih/Y* . Thus,
we want to show that for all i, =} = 5 - Z(;),7 = 5 Vr(i)» and mp 4+ xl oy =
S Me@y + 8 Tr(i)Vi-

20

)

Below, we give an overview of how we transform the inputs to the argument pro-
tocol into general linear constraints that can be passed into a modified Bulletproofs?
sub-routine.

Overview. The first step is for V' to sample random challenges r, u <—s Z;. Using the
outputs of the shuffle, can create a commitment, Ag 5, to a random linear combina-
tion of the output secret keys, {z}}7 ;. A

Letk = (ki ko, ..., kn), where k; = r—uf. Letk = [[/—) k;and k* = Y0 k;.

=1

App = H ki — gm;k1+...+z;ykn
) 7

7

Similarly, V can create a commitment, Ag;, to a random linear combination of the
randomizers for the output ciphertexts, {v;} ;.

1 k; kit 4y k
ARﬁb:Hbi = gnkittrmka

(2

Finally, let d} be the discrete log of ¢; with respect to the public generator g. V can
create a commitment, Ag ., to a random linear combination of {d}} ;.

’ 3

. ’ ’
Ape= HC{ ki _ gd1k1+-~.+dnkn

g

Now, let ap be the vector of discrete logs in Ag j with respect to bases {h;}* . P
needs to argue that ar satisfies two conditions:

1. T[; ar; = s™ 1, ki. This shows, using a polynomial identity test, that there exists
7 € Xy, such that ap; contains ¢; - kr1(;)),where ¢; is any constant.

2. > ,ar; = sy, k;. This shows, using a random linear combination check, that
there exists an s € Z; such that for all ag;, ¢; is equal to s.

3. ap is the committed value in Ag j with respect to bases {h;}? ;, as well as the
committed value in Ap ;, with respect to bases {b;}_;, and in A . with respect to
bases {¢; }1 4.

If aR satisfies these conditions, V can deduce that ap takes the following form:
(8kx1(1)s -+ 8kx1 ()). This implies that Ap j, is a commitment to), ;- 5-kr1(;) using
bases {h;}"_,, which is a random linear combination, using permuted coefficients, of
{z;-s}}_,. In addition, the third condition implies that Ap ;, and A . are commitments
to a random linear combination (using the same permuted coefficients) of {~y; - s},
using bases {b; }_;, and {(m; + x;7;) - s}, using bases {¢;}*_;, respectively.

We now know that Ag p, Ary, AR, are commitments with two representations
each. The first representation holds due to ap being well-formed with respect to bases

% A brief overview of Bulletproofs is given in Section 5, but for a full description, see the original
paper [25].

21

from the input lists. The second holds due to the verifier’s construction of the commit-
ment using bases from the output lists.

A= T[HE = 5 e Ay = T[4 = g%t
i i

T T
[

First, by equating the exponents in the two representations of Ag 5, we obtain that a
random linear combination of {z}}?_;, using coefficients {k;}?_,, is equal to a random
linear combination of {x; - s}i__;, using permuted coefficients {k1(;)) }i-;.

S mios kew) =Y 7 ki
Zxﬂ(i)~s~ki = inkl

which means that with overwhelming probability, s - z(;y = zj. By similar argu-
ments, we can deduce that, with overwhelming probability, s - Vr(@) = %’» and that
5+ (Mr) + Triy - Vr(s)) = di. If we let di = mj + 2}, (ie. the output ciphertext
is an encryption using the output public key and input randomizer), the latter equality
yields the following.

s Mgy + Tr(i) - Yr()) = d5

8 Mgy = di = T Yr(s) = M

Thus, we can deduce that s - m,(;) = m}.

Arguing that ap is well-formed. To argue that ap satisfies the sum and product con-
ditions listed above, our protocol will invoke the Bulletproofs sub-routine, described
below under the heading, ‘Bulletproofs sub-routine.” However, we will first need to re-
duce the conditions to equations that are either a Hadamard (entry-wise) product or
a linear combination of vectors. The sum condition,) . ar; = s -), k;, is already
in the latter form. However, the product condition, Hi ar; = s" Hz k; requires some
manipulation.

To represent the product condition as a Hadamard product of two vectors, we will
use a helper vector, ar, € Zy. ay, is constructed recursively as follows.

a1 =1 A ap;,=ar;_1-aR;—1

Using az,, we can now represent | [, ar; as ar,, - ar,, = [[; ar;. Putting it all together,
the following equations capture the sum and product conditions on ar, and can be
passed to the Bulletproofs sub-routine.

ar,=1 N ar, =ar, , ar,_, N

ar, ag, =S" - H(ki) A Zam =s- Z(kz)
i=1 i

?

22

Note that the argument system will need to receive commitments to s and s™ as public
input (denoted by W and V). A simple protocol, similar to the shuffle protocol but not
shown here, can be used to argue that V' is well-formed with respect to W. //
Bulletproofs sub-routine. The Bulletproofs sub-routine works as follows: given linear
constraints for vectors ay, and ag, along with commitments to ar, ag, and any pri-
vate target values used in the constraints, the sub-routine will run a logarithmic-size
zero-knowledge argument that the committed vectors and values satisfy the linear con-
straints. Note that this sub-routine is slightly modified from the Bulletproofs paper [25]
in order to fit our setting.

The full interactive protocol between P and V is given below:

Statement: Vi € [n] (h7), b7), cr ;) = (75, b5, ¢5)
CRS: g€ G,ge G", h,b,cc G"
Public input: h', b’ ¢’ e G", W,V € G,n € Z

*

Private input: s € Zp, Te X,

1. P : If CRS does not pass CRSCheck, return L.
2.V = Pirussly,
3. Pand V:

4. P:
— aRp = (Sk.,r1(1), ey Skﬂ.—l(n))
—aj = (1, Sl{:ﬂ.-l(l), S2kﬂ-1(1)kﬂ-1(2), ceey Snk'ﬂ.»l(l)...kﬂ.-](n))
- O‘aﬂvpfupbapc (*$Zp
— SI,SR <8 Zg
5. P—=V:
_ AL — gaLha
- S = gSLhﬁ
_ SR,h = hSrRhPR
— SR,b — bSR AP

— SR,C — Csthc
6. V—>P:iy,z4sly

7. PandV :
- yn = (17yay2a ayn)
-yt = (21, ")
- 8y, 2) =< Py "y 2> —z

8 P:
- U(X)=a,+ 2%y " +s.X?
— ’I"(X) = (aRX +SRX3) oy” —)(y?i2
- X)) =< U(X),r(X) >=, X"

23

-t = s"l%y”_1 — 522 <1,k > +6(y, 2)
- Ti 2y, 1 =140,2,3,4,5}
- T;=g"h", i=1{0,2,3,4,5}

9.V > Piussi,

10 P—=V:
-1=1(z)
- r=r(x)
—-t=<lLr>

- To = 70 + 722? + m323 + Tyt
- pn = a+ Ba? + ppa’

-y = o+ B + ppa®

- Mc:a+6$2+p0x3
-@:%;iem
—h=b ien]

= cf_L i€ n]

N e 2 oyeyn Tk g®Wwa) T, Tsz .T:;vg -Tf .TE:)CE’

- C

<%

>

— hHR .gl . (h*)r ; Ap - A%,h . Sf2 Sf;h 'gzsy—n ' (h*)fw-y:_%y"
— hHb . g1 . (b*)r ; Ar - ACIC%,b . SfQ . S]Z??:b) gze'y’” ' (b*)—m'y;“%y“

n—24

— hie . gl (c*)T LA A%, - 5%2) S}w{’:c g YT () TEYE ey

)
12. 'V : Accept or Reject.

Multi-Key Shuffle Argument

Theorem 2. Under the discrete log hardness assumption, the multi-key shuffle argu-
ment presented in this section has perfect completeness, perfect honest-verifier zero-
knowledge, and computational witness extended emulation.

Comparison with Bulletproofs. Bulletproofs’ verifiable shuffle protocol takes as input
two lists of commitments. It runs both lists through a sorting circuit and checks that
the outputs are equal. The proof size is O(log(nlog(n))), and proof generation and
verification run in O(n log(n)) time.

Our shuffle proof protocol can be implemented using Bulletproofs, but it is compli-
cated and less efficient. Since h and h’ are not independent commitment parameters,
we cannot use them as the two lists of commitments. Thus, the prover needs to commit
to h and h’ themselves; for example, embedding h and h’ into elliptic curve points and
setting L; = gPh® and Ly = g’ b5 Then, the prover would run our power argument
to commit to h®. Finally, both lists will be run through the sorting circuit and checked
for equality.

In our argument, we eliminate the complicated commitments to h and h’ and the
implementation of the sorting circuit. By doing so, we are able to lower our computation
and communication costs: our proof size is O(log(n)) and our proof generation and
verification time is O(n).

24

5 General Argument Protocol

In Section 4.3, we presented a zero-knowledge argument protocol for a multi-key ver-
ifiable shuffle with improved efficiency. Now, we will expand this protocol to present
a general zero-knowledge argument protocol for arbitrary arithmetic circuits. The ar-
gument works directly over committed vectors for proving satisfiability of adaptively-
defined randomized verification circuits, and remains secure even when the CRS is
maliciously generated. We begin with a brief overview of our techniques.

Overview. Just as in the multi-key verifiable shuffle argument protocol, the general
argument protocol in this section will also use a modified Bulletproofs sub-routine. Al-
though our general protocol is an extension of Bulletproofs, we cannot use Bulletproofs
in a black-box way because our techniques require modifications throughout the Bul-
letproofs protocol. Therefore, we present Bulletproofs as a starting point and describe
our new functionality in hybrid steps.

We define four protocols, Pg, P1, P2, P3s. Each protocol adds a new technique or
functionality to the previous one, such that P3 is the composition of all of our tech-
niques. We describe each protocol below:

Protocol Py. Our starting point is Bulletproofs. The Bulletproofs protocol enables the
prover to argue that committed inputs that satisfy an arithmetic circuit C. The crux of
the protocol is reducing satisfiability of the arithmetic circuit to satisfiability of a set of
constraints, and then reducing satisfiability of the constraints to satisfiability of a single
inner product relation.

We first describe the reduction from arithmetic circuit to constraints. Following [24],
Bulletproofs represents an arithmetic circuit with n multiplication gates (each with fan-
in 2) as a Hadamard product (entry-wise multiplication) and a set of linear constraints.
For each multiplication gate, let a;, be the vector of left wire values, ar be the vector
of right wire values, and ap be the vector of output wires. Then, satisfiability of the
multiplication gates can be captured using the Hadamard product relation, a, c ap =
ao. Satisfiability of the rest of the circuit, including constraints on inputs {p; }_,, can
be captured using (< 2n linear constraints of the form Wy -ay+Wgr-ar+Wop-ap =
Wp-p+d,for WL.q W, Wg, Wp € ngn’ andd € Zp.

Finally, the inputs {p;}?_; must be the committed values within the ! Pedersen
scalar inputs commitments from the prover, { P, = Com(p;, p;)}._,. Thus, satisfiability
of the arithmetic circuit is reduced to satisfiability of the following constraints.

{Pi}é:1:{com(pi,pi)}§:1 AN apocar=aop A
Wi-ar+Wpgr-ap+Wp-ap=Wp-p+d

Now, we describe the reduction from the above constraints to a single inner product
relation. First, P creates commitments Ar, Ay, Ao to the wire values ar,ay,, ap, re-
spectively. P also commits to sy, and sg, which will be used as blinding values for ar,
and ap.

Then, V uses its random challenges y, z to reduce the Hadamard product relation
and linear constraints into a single inner product relation. This is done by taking a ran-
dom linear combination of all the equations, using coefficients y" = (1,y,...,y" 1)

25

and z?zﬂ = (2,2%,...,29). If the inner product relation holds, then the individual
equations will all hold with overwhelming probability.

Using the inner product relation, V defines three polynomials [(X), 7(X) € Z;[X],
and t(X) € Z,[X] with respect to the left vector, right vector, and output vectors in
the inner product relation. Now, P must argue that the polynomials are constructed
correctly. This sub-argument uses a polynomial commitment scheme from [24], and
applies an inner product optimization for logarithmic communication complexity.

V evaluates the polynomials in the exponent, using the public parameters, chal-
lenges x,vy, z, and commitments to Agr, Ay, Ao, Sr, and Sk and checks that they
match the evaluations of the polynomials submitted by the prover. Finally, V checks

that t(z) = (I(z), r(x)). If all these checks hold, then the inner product relation holds.

Protocol P;. Our first extension is to allow the protocol to prove statements not only
on committed scalars, but also on committed vectors. The benefits of this are twofold.
First, we are able to achieve concretely smaller proof size when the length of the input is
greater than the log of the size of the circuit. Second, the prover will be able to directly
integrate commitments from previous protocols that use the same CRS, whether these
commitments are in scalar or vector form.

We modify the Bulletproofs protocol as follows. Let {v;}™; be the vector-valued
inputs to the circuit. The linear constraints that describe the circuit now include con-
straints {Wy;}; on the input vectors. Thus, P must argue that the following con-
straints are satisfied.

{(Vidir, ={Com(vi,vi)}ity A {P}i_; ={Com(pi,pi)}i=y A apocar=aop A

WL'aL+WR'aR+WO'ao+ZWVi'ViZWP'P-i-d
i=1

for Wi, Wr, Wy € Zl‘?x”, {Wyim, € Zl‘?xm, Wp € Z,Q x1,and d € Z,.
When we reduce these constraints to a single inner product relation, the constraints
Wy, appear in the left vector and the commitments V; appear in the right vector. Then,
when defining the corresponding polynomials /(X) and r(X), the constraints and com-
mitments for the vector inputs must all be raised to different powers of X to ensure that
the commitments are non-intersecting. The verifier needs to include these constraints
and commitments as well in the final verification step.

The incorporation of vector commitments and corresponding constraints yields poly-
nomials (X)), 7(X), and t(X) of degree O(m). We use the polynomial commitment
scheme directly from [24], which is described below.

Definition 25 (PolyCommit [24]). Let pp be the public commitment parameters of the
commitment scheme, let t(X) = H?liml t; X" be a polynomial of degree m1 + ma,
with a constant ty term.

— PolyCommit(pp, m1,me,1,4(X)) — (pc,st), where pc = ({T7 2, {T7}}™)
and st = (t(X), 1)

— PolyEval(st, z) — pe, where x is a challenge from the verifier, and pe = (t,7,)

— PolyVerify(pp, m1, mao, pc, pe, x) — Accept or Reject.

26

This scheme has communication complexity logarithmic in the degree of the poly-
nomial ¢(X). Here, the polynomial has degree m + 2, so the complexity of this step is
O(y/m). For witness size O(m - n), the overall proof size is O(y/m + log(m - n)).

Protocol P,. Our second extension is to allow statements with randomized verification.
Bulletproofs only considers deterministic arithmetic circuits. However, many problems
including polynomial identity testing, matrix multiplication, and primality testing, can
be efficiently verified using randomized circuits.

Our main technique is to allow the verifier to adaptively define the circuit using
random challenges. This is possible by encoding a universal circuit that accepts as input
a set of functions, and that will evaluate the functions on the prover’s inputs and the
verifier’s challenges.

First, as before, the prover provides commitments to the witness as inputs to the
protocol. Then, the verifier samples a random challenge ¢ € Zj;. Using c, the prover and
verifier can compute the randomized linear constraints of the circuit, Wy, Wg, W,
{Wy;}m,,, and Wp as follows.

WL:fWL(C) GZ;?X” WR:wa(c) GZZC?X” WO:fWL(C) Gngn
Wy = fwy,(c) € Z9" Vie [I,m] Wp = fw,(c) € Z@X!

In addition, using c and the witness, the prover can compute the randomized wire values
for the multiplication gates of the circuit, ar,ap, and ap.
ar = fa,(c,w) €Zy ap = fay(c,w) €Z; ap = fa,(c,w) € Zy

Once the constraints and wire values are fixed, then the protocol proceeds as before.

Note that we do not consider how to construct probabilistic verification circuits
for statements; this is outside the scope of the zero-knowledge argument. However,
randomized verification is well-studied in the literature.

When enabling arguments for probabilistic statements, our argument size remains
logarithmic in the size of the circuit, but the circuits themselves are often significantly
smaller! Thus, we achieve concrete improvements in communication complexity for the
class of problems with more efficient randomized verification.

Protocol P3. Our third extension is allowing the CRS to come from an untrusted verifier
or third-party, rather than from a trusted setup algorithm. The motivation for this comes
from the shuffle application; there, the inputs and outputs of the shuffle, which are
generated by the individual users of the bulletin board and the shuffler, are used as
commitment parameters for the argument protocol. In such settings, when the CRS
could be subverted, we must ensure that zero-knowledge still holds.

To do so, the prover must run the algorithm CRSCheck to verify that the CRS looks
honestly generated. If the check passes, we use our claim from an earlier section that
Pedersen commitments remain hiding, so the protocol has subversion zero-knowledge.

Note that the prover is not allowed to subvert the CRS, and we assume that the
prover does not know a discrete log relation between the commitment parameters. Thus,
soundness is not affected by the subverted CRS.

27

-
Po.| P} P . [Ps
Lo
Statement: Vi € [l,l], P, = gg’hg‘ A aroar =apo N Wr-ap+Wg-ar+Wo-ao+

CRS: g, h<+sG", go,ho,h<sG
Public input: g, h € G, go, ho,h € G, P € G, , W, Wr, Wo € 297",

Vi€ [1,m| Wy, € Z9*" | Wp € &> d € ZY,

r----= il
Private input:1 w € Zy | v1,...,Vim € Zy, Yy E Ly || P € Z;,p € Zé
Lo - - -
1. P : If CRS does not pass CRSCheck, return L .
r----------=-=-=-—==-=-=-=-- l
22P—=>V: Vi€ [n],WZ = Com(hi,wi) I
S .l
r=""=-=-- il
3V > P:iicsly
L — — — - = -
r---—-------n-. r- """~ rr--T-T—-T-—-T- -~~~ il
‘Wi =fw,(c)r Wgr=fw,(c)r Wo=fw,(c)
N d L e e e - - - = J L e e e - - - = d (2)
| arr- - - T T T T == A
Wy, = fwvi(c)Vi el,m] "Wp= fwp (ct
,,,,,,,,,,,,,,,,,, P
4. P :
| B T - - - - - -~ A
rar = fa, (c,w)1ar = fagp(c,w)1ao = fa,(c,w) 1 3)
S U U -
5P =V :08,k¢,A4sLy,sL,Sp +sZy
Ar =h®RR® Ap =g h® Ao =gPon")
Sgp=h"h® Sp =g*h})
6.V =P :y,zsly,
7.Pand V :
y' =Ly, ey (©)
zﬁf]rl = (z,zQ, .. .,zQ) S Z,C,2 @)
8(y,2) = (y "o (z(i;" - Wr), 2] - Wi) ®)
8.P:
(X)=ar- X "+ao- X 4y "o(zf - Wg)- X '4s,- X+
,)
S Wy - X0 e 73(X]
(10)

28

r(X)=y"oar X —y" - X2+ 20 (W - X + Wg - X%)+

o (SR X35

m-+2
HX) = X),r(X) = [[6X ez[x]
i=—(m+2)

to = (az,an-y") — (a0, y") + (227" 0) + 8y, 2)

=(z3}, Wp-p+d)+5(y,2)
9.P—=V:
(T} iy AT (X)), 7) <PolyCommit((go, ho),
m+2,m+21,¢X))
10.V = P:ax<sZ,

11.P—>V:
(£,1,7, 7, 1) < PolyEval((¢t(X),7), z)

12.V:
PolyVerify((go, ko), m + 2,m + 2,1, T}, t, 7,)

i+1

hi=hY Vie[ln]

Q+1,
W = g”i] Wi
—n +1
Wp=hY o0 Wa)
Q+1,
Wo = gz[li] Wo

Q1 o,
Wy, = g~ Wi vie [1,m]

2

W | TIm, W O st sh

13. V : Accept or Reject

huglh*r z Affl . A% . AacO’2 . 2‘11 V;LH—S . h*fy" . Wf . W}“{,il.

an

(12)

13)

(14)

15)

16)

an
(13)
19
(20)
@n

(22)

(23)

P3: Composition of protocols

Theorem 3. Assuming hardness of discrete log, the general argument protocol P3 pre-
sented above has perfect completeness, subversion zero-knowledge, and computational

witness-extended emulation.

6 Acknowledgements

We would like to thank Oleg Andreev, Preetum Nakkiran, Salil Vadhan, and Cathie Yun

for helpful discussions, and the anonymous reviewers for their valuable comments.

29

References

10.

11.

12.

13.

15.

16.

17.

19.

20.

. Chaum DL. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM. 1981;24(2):84-90.

. Dingledine R, Mathewson N, Syverson P. Tor: The second-generation onion router. Naval

Research Lab Washington DC; 2004.

. Ren J, Wu J. Survey on anonymous communications in computer networks. Computer

Communications. 2010;33(4):420-431.

. Juang WS, Lei CL, Chang CY. Anonymous channel and authentication in wireless commu-

nications. Computer communications. 1999;22(15-16):1502-1511.

. Jacobson M, M’Rathi D. Mix-based electronic payments. In: International Workshop on

Selected Areas in Cryptography. Springer; 1998. p. 157-173.

. Choi S, Kim K. Authentication and payment protocol preserving location privacy in mobile

IP. In: GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.
03CH37489). vol. 3. IEEE; 2003. p. 1410-1414.

. Androulaki E, Raykova M, Srivatsan S, Stavrou A, Bellovin SM. PAR: Payment for anony-

mous routing. In: International Symposium on Privacy Enhancing Technologies Symposium.
Springer; 2008. p. 219-236.

. Androulaki E, Choi SG, Bellovin SM, Malkin T. Reputation systems for anonymous

networks. In: International Symposium on Privacy Enhancing Technologies Symposium.
Springer; 2008. p. 202-218.

. Zhai E, Wolinsky DI, Chen R, Syta E, Teng C, Ford B. AnonRep: Towards Tracking-

Resistant Anonymous Communication. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI). CA, USA: Santa Clara; 2016. .

Neft ACA. verifiable secret shuffle and its application to e-voting. In: 8th ACM Conference
on Computer and Communications Security (CCS; 2001. .

Jakobsson M, Juels A, Rivest RL. Making mix nets robust for electronic voting by ran-
domized partial checking. In: USENIX security symposium. San Francisco, USA; 2002. p.
339-353.

Furukawa J, Sako K. An efficient scheme for proving a shuffle. In: Annual International
Cryptology Conference. Springer; 2001. p. 368-387.

Groth J, Ishai Y. Sub-linear zero-knowledge argument for correctness of a shuffle. In: An-
nual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer; 2008. p. 379-396.

. Wikstrom D. A commitment-consistent proof of a shuffle. In: Australasian Conference on

Information Security and Privacy. Springer; 2009. p. 407-421.

Groth J. A verifiable secret shuffle of homomorphic encryptions. Journal of Cryptology.
2010;23(4):546-579.

Bayer S, Groth J. Efficient zero-knowledge argument for correctness of a shuffle. In: An-
nual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer; 2012. p. 263-280.

Groth J. Non-interactive zero-knowledge arguments for voting. In: Heidelberg SB, editor.
International Conference on Applied Cryptography and Network Security; 2005. .

. DeMillo RA, Lipton RJ. A Probabilistic Remark on Algebraic Program Testing. Georgia

Inst of Tech Atlanta School of Information and Computer Science; 1977.

Schwartz JT. Probabilistic algorithms for verification of polynomial identities. In: Interna-
tional Symposium on Symbolic and Algebraic Manipulation. Springer; 1979. p. 200-215.
Zippel R. Effective polynomial computation. vol. 241. Springer Science & Business Media;
2012.

30

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Miller GL. Riemann’s hypothesis and tests for primality. Journal of computer and system
sciences. 1976;13(3):300-317.

Rabin MO. Probabilistic algorithm for testing primality. Journal of number theory.
1980;12(1):128-138.

Agrawal M, Kayal N, Saxena N. PRIMES is in P. Annals of mathematics. 2004;p. 781-793.
Bootle J, Cerulli A, Chaidos P, Groth J, Petit C. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer; 2016. p. 327-357.

Biinz B, Bootle J, Boneh D, Poelstra A, Wuille P, Maxwell G. Bulletproofs: Efficient range
proofs for confidential transactions. Cryptology ePrint Archive, Report 2017/1066, 2017.
https://eprint. iacr. org/2017/1066; 2017.

Maxwell G. Confidential transactions. URL: https://people xiph org/”
greg/confidential_values txt (Accessed 09/05/2016). 2015;.

Biinz B, Agrawal S, Zamani M, Boneh D. Zether: Towards Privacy in a Smart Contract
World. IACR Cryptology ePrint Archive. 2019;2019:191.

Bellare M, Fuchsbauer G, Scafuro A. NIZKs with an untrusted CRS: Security in the face
of parameter subversion. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer; 2016. p. 777-804.

Hoffmann M, Kloof3 M, Rupp A. Efficient zero-knowledge arguments in the discrete log
setting, revisited (Full version). 2019;.

Bellare M, Rogaway P. Random oracles are practical: A paradigm for designing efficient
protocols. In: Proceedings of the 1st ACM conference on Computer and communications
security. ACM; 1993. p. 62-73.

Groth J. Linear algebra with sub-linear zero-knowledge arguments. In: Advances in
Cryptology-CRYPTO 2009. Springer; 2009. p. 192-208.

Freivalds R. Fast probabilistic algorithms. In: International Symposium on Mathematical
Foundations of Computer Science. Springer; 1979. p. 57-69.

Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof systems.
SIAM Journal on computing. 1989;18(1):186-208.

Goldreich O, Micali S, Wigderson A. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. Journal of the ACM (JACM).
1991;38(3):690-728.

Kilian J. A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing. ACM; 1992. p. 723-732.
Schnorr CP. Efficient signature generation by smart cards. Journal of cryptology.
1991;4(3):161-174.

Cramer R, Damgard 1. Zero-knowledge proofs for finite field arithmetic, or: Can zero-
knowledge be for free? In: Annual International Cryptology Conference. Springer; 1998.
p. 424-441.

Seo JH. Round-efficient sub-linear zero-knowledge arguments for linear algebra. In: Inter-
national Workshop on Public Key Cryptography. Springer; 2011. p. 387-402.

Ben-Sasson E, Chiesa A, Genkin D, Tromer E, Virza M. SNARKSs for C: Verifying program
executions succinctly and in zero knowledge. In: Annual Cryptology Conference. Springer;
2013. p. 90-108.

Ben-Sasson E, Bentov I, Horesh Y, Riabzev M. Scalable, transparent, and post-quantum
secure computational integrity. IACR Cryptology ePrint Archive. 2018;2018:46.

Ames S, Hazay C, Ishai Y, Venkitasubramaniam M. Ligero: Lightweight sublinear arguments
without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM; 2017. p. 2087-2104.

31

42. Wahby RS, Tzialla I, Shelat A, Thaler J, Walfish M. Doubly-efficient zZkSNARKSs without
trusted setup. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE; 2018. p.
926-943.

43. Giacomelli I, Madsen J, Orlandi C. Zkboo: Faster zero-knowledge for boolean circuits. In:
25th {USENIX} Security Symposium ({USENIX} Security 16); 2016. p. 1069-1083.

44. Setty S. Spartan: Efficient and general-purpose zkSNARKSs without trusted setup;.

45. Yun dVHAO Cathie. Programmable Constraint Systems for Bulletproofs;.

46. Sako K, Kilian J. Receipt-free mix-type voting scheme. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer; 1995. p. 393-403.

47. Abe M. Universally verifiable mix-net with verification work independent of the number of
mix-servers. In: International Conference on the Theory and Applications of Cryptographic
Techniques. Springer; 1998. p. 437-447.

48. Abe M. Mix-networks on permutation networks. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer; 1999. p. 258-273.

49. Abe M, Hoshino F. Remarks on mix-network based on permutation networks. In: Interna-
tional Workshop on Public Key Cryptography. Springer; 2001. p. 317-324.

50. Lindell Y. Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology. 2003;16(3).

51. Nguyen L, Safavi-Naini R, Kurosawa K. Verifiable shuffles: A formal model and a paillier-
based efficient construction with provable security. In: ACNS; 2004. .

A Proof of Lemma 1

Let g,h € G be part of a CRS that has passed the CRSCheck algorithm, and let ¢ =
g™h", m,r € Z;, be a Pedersen commitment for the message m. Since h, g € G, there
must exist some a € Z;‘, such that h = g%. Now, we note that for every message m/,

there exists a unique 7’ such that gm' h" = ¢. We can compute 7’ as
/-1 o / *
r'=a " (m—-m'+ar)€Z,

Thus, ¢ does not reveal any information about m, so the commitment is perfectly hiding.
A similar argument can be made for Pedersen vector commitments.

B Proof of Theorem 1

We prove permutation indistinguishability by reducing the IND-CPA g security of our
shuffle to the Decisional Diffie-Hellman (DDH) Hardness Assumption.

Definition 26 (Decisional Diffie-Hellman (DDH) Hardness Assumption). Let G be
a large cyclic group of prime order p. We consider the following two distributions:

- (9,9",9% 97°), where r, s <—s Ly, are chosen uniformly at random.
- (9,9",9°, g"), where 1, s,t <sZ,, are chosen uniformly at random.

The DDH hardness assumption states that for all probabilistic polynomial-time algo-
rithms B, the probability that B efficiently distinguishes between these two distributions
is negligible.

32

We show that if there exists an adversary A which has non-negligible advantage in
the IND-CPA g security game, we can construct an adversary 13 that breaks the hardness
of DDH. We denote the DDH challenger by CPPH

DDH Adversary B

1: TCn,[TT<n—2<sA(n)
2: (pp:= (G,p,g)) +sC”PH
30 (ma,...,mn;{pk;, cti bier; mo, Tt mo(3) = m()Vi € T) AKGen-Ene (o)
40 (g, g, g") «sCPPH
5: pky =g ety s Cpp
6: pk; «sKGen(pp),ct; «sCpp Vi g T,j#1
7: L:= {(pki, Cti)}ie[n]

8: w:=m;pp = (G,p,g°)

9: pk;(l) =g ct;m s Cppr

10: pki(;y < KGen(pp'), ctr(yy <5 Copr Vi # 1
n: L= {(Pkr(iys Ctr(iy) Fien

12: b <sApp,pp’, L, L")

B: b =b

14: returnbd’

Given the public parameters provided by C, A specifies messages m, ..., My, a
subset T' of [n], such that |T'| < n — 2, public keys pk, for i € T, and two distinct
permutations 7y and 7; that contain the same mapping for all indices in 7. Since the
permutations are distinct, and the set T leaves out two indices in [n], there exists at least
one index in [n] but not in 7" that is mapped differently by 7o and 1. Without loss of
generality, let this index be ¢ = 1.

Now, C samples a random bit b+ {0,1}. If b = 1, it creates a valid DDH tu-
ple; otherwise, it samples three random group elements from G. B receives the DDH
challenge (¢", g*, g*) from C.

B uses the DDH challenge as follows. It sets pk; := g, P (1) = g%, and
pp’ := (G, p, ¢°). Note that B could have used the DDH challenge within the cipher-
texts, rather than the public keys 3, since the El1 Gamal ciphertext components are also
group elements.

Then, B fills in the rest of the unspecified elements in L and L’ with random group
elements sampled from the appropriate domains. B sends (pp, pp’, L, L’) to A and re-
ceives a guess b’ for which permutation was used.

If (¢",9% g*) was a valid DDH tuple, the placement of g' in the output list L’
would adhere to the mapping given by ;. Thus, an A who can distinguish between
permutations would have a non-negligible advantage in guessing b’ = 1. If the DDH
challenge was not a valid DDH tuple, however, then the entire list ' contains elements

3 For instance, let ct; denote either the first or second component of the ciphertext. Then, B
could set ct1 := g”, ctr, (1) == g', and pp’ := (G, p, g°).

33

that are selected randomly and that do not correspond to L, so A has no advantage in
choosing the correct permutation.

Thus, if A returns b = 1, Breturns ¥’ = 1, and has the same advantage of A. Other-
wise, B returns b’ = 0 and has no advantage. B will therefore win the IND-CPA g game
with half the advantage of .A. Assuming A has a non-negligible advantage in guessing
the permutation, B has a non-negligible advantage in choosing the correct message.
However, under the DDH hardness assumption, we should not be able to construct an
adversary B that can win the game with non-negligible probability. Thus, there must
not exist an adversary A that has non-negligible advantage in the IND—CPA“S4 security
game.

C Proof of Theorem 2

C.1 Perfect Completeness

Perfect completeness follows from inspection. It can be verified that the relation holds
for all valid witnesses.

C.2 Perfect Special Honest- Verifier Zero-Knowledge

Perfect SHVZK follows from the Bulletproofs’ efficient simulator. In addition, our sim-
ulator can simulate a commitment to az, by choosing a random group element in G. Ay,
is a perfectly hiding commitment, so the simulator’s choice of random independent
elements produces an indistinguishable distribution from a real execution.

C.3 Computational Witness-Extended Emulation

To show computational witness extended emulation, we run the prover and verifier with
random challenges. If we get an acceptable argument we have to extract a witness. We
construct an extractor x as follows. x calls the extractor XBulietproofs» Which runs the
prover with n different values of r and u, n different values of y, 4 different values of

z, and 6 different values of x, where z,y, and z are the verifier’s random challenges
within the Bulletproofs subroutine. Xguitetproofs produces O(n4) valid proof transcripts,
using which it extracts witnesses ar and ar.

XBulletproofs takes linear combinations of the final verification equations using Ag n, AR b,

and Ap . to extract a, ar, and ap such that

Aprp =h?R

Agyp = b

AR,C ="
AL = gaL h®

34

and such that the following linear constraints hold.

aro = 1
ar; = AQLi—1 " OR;—1

n
aLn—1"@Rp—1 =S Hkt
[

n—1
E QR; = § E ks
=0 i

If XBulletproots can compute different o, a’R, a); for any other set of challenges such that
the above equations hold, then this yields a non-trivial discrete log relation between
independent generators h, g, h, which contradicts the discrete log relation assumption.

Now, we argue that the extracted a;, and ap are properly formed. This will allow
to extract witnesses s and 7. Before we begin, we will state the following lemma that
will be used in the proof.

Lemma 2 (Schwartz-Zippel). Let p be a non-zero multi-variate polynomial of de-
gree d over Zg. Then, the probability of of p(x1,...,x,) = 0 for randomly chosen
T, ..., Ty s Ly is at most qfdl.

To check whether two multivariate polynomials pi,po are equal, we can use a ran-

dom w1,..., 2, ¢=sZ; and test whether py(z1,...,7,) — pa(®1,...,2,) = 0. If
p1 = po, this test will always pass. If p; # po, the test will pass with probability at
most maz(di,ds)

q—1 ’

We give a high-level overview of our argument before proceeding in detail.

Overview. We show that if the extracted ay, and ag satisfy the constraints, then ag is
properly formed. The first two constraints on ay, are trivial, so we focus on the latter
two constraints. The first of these shows that there exists a permutation 7 mapping h
to h’, and the second shows that there exists an s such that all the discrete log between
input-output pairs are equal to s.

To show that ap, is properly formed, we first express each h;- as a commitment to a
discrete log relation between bases h = ho, ..., h,_1. Since the discrete log between
bases h are not known to P, the commitment is binding to a unique relation. This will
allow us to re-write Ap in terms of bases h in two ways: one as a vector commitment
to ag, and the other as a compilation of these discrete log relations.

Now, since we have written Ag in two distinct forms, we match the exponents,
which will give us an equation for ag;. From our first constraint on ar, we find there
exists a permutation 7 between the elements in h and h’. From our second constraint,
we find there exists an exponent s to which all input elements are raised. Finally, x
extracts 7 and s from ag.

Existence of permutation 7. First, we show that every element of ap contains a distinct
k; and that there exists a permutation mapping elements in h (indexed by 7) to elements

35

in h’ (indexed by 7).
Recall that ag; was constructed by V using bases h’ as follows:

Ap =] n" (24)
=1

Next, we know that for all j € [n], h; can be expressed using the bases h. This is
because in a prime order group, all elements are generators.

B, = H i (25)
i=1
where x; ; € Z,. Then, combining equations (24) and (25), we can re-write A using
these z; ;’s.
Ap =TI T 0" = T p= ™ (26)
j=li=1 i=1

At the same time, A can also be expressed using the bases h.
Ap = [™ 27)
i=1

If this equation does not hold, then we have a non-trivial discrete logarithm relation
between independent bases h;, which contradicts the discrete logarithm assumption.
Thus, we can compare equations (26) and (27) to relate the ar;’s to the x; ;’s.

n

aR; = Z(xi,j - kj) (28)

j=1

Note that since the k; terms were applied by V), the prover could not have altered them
or chosen other combinations of values that equal k;. The prover would only have had
control over altering the x; ; terms that relate h; to h;.

Now, we turn to our first constraint on ar, which is the following.

n n
[[en =TTk
=1 =1

Using (28), we can replace the ap;’s with Z?zl (2;,5 - k;) in this first constraint to get
the following equation.

n n

11D @iy k) =s" [& (29)

i=1j=1 i=1

Again, we note that the k;’s on the left hand side are applied to the prover’s commit-
ment to x; ;’s, so the k;’s cannot have been altered by the prover.

36

We show that this equation enforces a permutation 7 from j to ¢. First, we claim that
for every j € [n], there exists exactly one ¢ € [n] such that z; ; is nonzero. By way
of contradiction, assume that for some j, x; ; is zero for every 7. Then, the left side of
the equation will not contain a k; term, yet there will be a k; term on the right. Thus,
there must be at least one ¢ for every j such that x; ; is nonzero. Similarly, assume
that for some j there exists ¢,4’ € [n], where ¢ # ¢/, such that z; ; and z;/ ; are both
non-zero. Then, k; will appear in two separate sums on the left side. When these sums
are multiplied, this will result in a kzjz term on the left side; however, there is no such
term on the right side. Thus, for every j, there must be exactly one ¢ such that x; ; is
non-zero. Next, we show that for every j € [n], there exists a distinct ¢ € [n] such that
x;,; is nonzero. Assume that there exists an ¢ and j # j’ such that x; ; and z; ;- are
both nonzero. Since we know that exactly one x; ; is nonzero for a given j, k; and k;/
will appear only within the same sum on the left side. Then, when expanded, the left
side will not contain a k;k;/ term, yet the right side will. Thus, if x; ; and x; ;- are both
nonzero, then j = j'. This shows that for every j € Z,, there exists a distinct i € Z,,
such that z; ; is nonzero. If we define 7 as the function that maps from j to 4 for all
nonzero ; ;’s,
w()=i i.jen]
then, it is clear that 7 is a permutation. Now, we can re-write equation (29) as

n n
H(xi,ﬂ"](i) ki) = 8" H ks
i1

i=1

Thus, we have shown that there exists a permutation 7 mapping elements of h’ to ele-
ments of h.

Existence of universal discrete log value s. Next, we turn to our second constraint on

ar, which is as follows.
n n
E ar; = $ E k;
i=1 i=1

From the result of the first constraint, we can re-write the equation in terms of 7.

n n
Z Tix1(3) kﬂ—l(i) =S Z k‘i
i=1 i=1

Since the k1 (;)’s were applied by the verifier (so they are truly equal to the k;’s), and
7 is a permutation, the k£ terms must be the same on left and right hand sides of the
equation. Then, we see that the right side of this equation enforces that we must be able
to factor out s. This means that, for all ¢ € Z,,, the following must hold.

L ol (i) = S

This shows that all the coefficients are equal to the committed value s, and thus, are all
equal to each other.

37

Extracting witnesses s and m. Now that we know ap, is formed correctly, x can easily
extract witnesses s and . First, x can divide out Hi k; from [| , OR; to obtain s™. Then,
it can take the nth root of s” to obtain s.

B 1—[1 aR; 1/n

Now that y has extracted s, it can divide out s from each ap; to obtain k1 ;).

aR;

ke = =

Finally, it can compare the list of k.1(;)’s against the list of k;’s to extract the permuta-
tion 7.

Extraction either returns a valid witness (s, 7) or a discrete logarithm relation between
independently chosen generators g, h, h. By the Discrete Log Relation assumption, the
latter scenario occurs with negligible probability. x rewinds the prover O(n*) times, so
extraction is efficient. We have shown that extraction is efficient and returns a valid wit-
ness with overwhelming probability, which proves that computational witness extended
emulation holds.

D Proof of Theorem 3

D.1 Perfect Completeness

Perfect completeness follows from inspection. It can be verified that the relation holds
for all valid witnesses.

D.2 Subversion Zero-Knowledge

We proceed via hybrid argument, by constructing simulators for each of the protocols
above, P through P3. We claim that each protocol fulfills its respective zero-knowledge
property, conditioned on the previous protocol doing the same. Note that P corresponds
to Bulletproofs, while P3 is the composition of all our techniques. All the simulators
discussed below take as input the proof protocol’s public input pub and the verifier’s
randomness p.

Simulator Sy. This is the simulator for the Bulletproofs protocol.

- IHPUtS: pub = (g7h5907 hOa h7P7WLaWRaWO;WP7 d)”O

Compute z, y, z from the verifier’s randomness p.

- Uy Ty sy

- Lr<sZy

- tA: <la I‘>

- ARv AL; A07 SR —G

- S, =(h* g hT. Afil AL AzO*Z chrY W W}-r{l .WSQ .S}m;)r‘”’

38

-T,»<—$G i={-2,3},i#0
2%(B(y2)+(E3]) 091w 3 ot
- To = go - P* (= w7 Hi:—2,i7£0 T3

- Output' (ARa AL7A07 SR7 SLa Y, z; (E)—27 €T3, tAv la I')

Simulator S;. This simulator invokes Sg. It adjusts some of the values returned by Sg,
and uniformly samples the values not included in Sg’s transcript.

- InputS:pub = (gaha gOvh07haPaV7wLaWRaWOaVi € [1,771] WViaWP7d);p
- pub/ = (gahagOahOah7P7WLaWR7WO;WP7d)
- (A/R?A/LaAIO7SRaS/L7y 2 (Tl) 2,1: IU/ t/ ll ’)(—So(pub/,p)
L3 i+3

- Sy =S (T VT Wy)
Ti<—ssG ie{-m+2, m+2}/{ 2 3}

m—+2 zt
-To=T5- ll_L /(m+/2) 1¢/{ 23}T Hr—z 17£OT/
Output: (A, A%, Ao, Sk, SLi ¥ 25 (T))ic(~2.3) 0} » (To)ie {~(m+2)m+2} /{-2.3}»
To;l‘/;/,t/,t/,1/7rl)

Simulator S,. This simulator first computes the weights W, W’,, W, using the ver-
ifier’s challenge c. Then, it invokes S; with these weights as part of the public input,
and returns Sp’s output directly.

- Inputs: pub = (g, h, go, ho, h, P, V, W, Wgr, Wy Vi€ [1,m]| Wy,;, Wp,d,

fw.r, fw.L, fw,0, fa,r: fa,: fa,0); P

- Compute c from the verifier’s randomness.

- Wh = fw,r(Wg,¢), W, = fw,.(Wr,c), Wi, = fw,o(Wo,c)

- pub’ = (g, h, go, ho, h, P, V, W} Wy W,,.Vi € [1,m] Wy,;, Wp.d,
fW7R7fW,LafWOafa Rafa LafaO)

- (AR, AL, Ap, S, ST3 Y, 25 (T’)mﬁa,w TN ’)<—51(pub’,p)

- Output: (AR,A’L,A’O,Sk,S}J,y,z (T{)T;Ziz,a: TN !

Simulator S;. This simulator checks that the subverted commitment parameters are
valid. If so, it invokes S, and returns S,’s output directly.

- IHPUtS: pUb = (g7h7.gOa hOa hanvva,WR,WOaVi € [Lm] WViaWP7dv

fw.r, fw.L, fw,0, fa,rs fa,: fa,0); P
- If the CRS does not pass the CRSCheck verification algorithm, return L.

- (A AL, A, S, Sy 2 (TR 532/ i 1,1, x7) < S (pub, p)
- Output (A%, A}, Ay, Sk, STy, 2’5 (Tl’)m;i%x w1)

Putting together Lemmas 3, 4, 5, and 6, we obtain the theorem.

Lemma 3 (P(has Perfect SHVZK). For all pairs of interactive adversaries Ay, Ao

P {(mu,w) € Ry and A (tr) =1

o + Setup(1), (u, w, p) + Ag(a)] _
tr < (P*(o,u,w),V(o,u; p))

P |:(U,’U,,’LU) € Ry and A;(tr) =1

o < Setup(1*), (u, w, p) < A (o)
tr < So(o, u, p)

39

Proof. Follows directly from the security of Bulletproofs.

Lemma 4 (Pg has Perfect SHVZK — P; has Perfect SHVZK). Let us assume that
Po has Perfect SHVZK using simulator So. Then, for all pairs of interactive adversaries
Al) AQ

P |:(0’,’U,,U)) € Ryand Ay (tr) =1

o < Setup(1?), (u, w, p) + Az(0)| _
tr + (P*(o,u,w), V(o,u; p)) -

P {(mu,w) € Ry and A (tr) =1

o« Setup(1*), (u,w, p) = Az(0)
tr < Si(o, u, p)

Proof. By the assumption that Py has perfect SHVZK, the values produced by Sq are
indistinguishable from those in a valid proof produced by an honest prover interacting
with an honest verifier. Now, we show that the values computed by S; are also indistin-
guishable from those in a valid proof from an honest prover. First, we note that Sy, is
fully defined by the following verification equation.

nrghhe =AY gy v e wpwg g T we s sy

=1 =1

To ensure that this relation holds, S; modifies So’s computation of S, to incorporate
the V; and Wy, terms. Specifically, S; multiplies both sides of the equation Sy used
to compute Sz, by (X7, VLY VI/‘Z(H_?’))U‘/’3 in order to satisfy the relation.
Similarly, T} is uniquely defined by the following verification equation.

m+2
Ty = ggo(é(y,2)+(z[“if]“1,d)) . pl @i Weep) H o
i=—(m+2),i#0

S; modifies So’s computation of Tj to incorporate the additional T; terms and satisfy
the relation. Thus, all relations between values that are visible to the verifier hold.

Finally, S; creates the 7;’s that were not included in the output of Sg by sampling
random group elements. Since the honestly produced T;’s, for i # 0, are perfectly
hiding commitments, they are indistinguishable from random group elements in the
verifier’s view. This completes the simulation. S; is efficient and produces a transcript
that is identically distributed to that of an honestly computed proof, so special honest-
verifier zero-knowledge holds.

Lemma 5 (P; has Perfect SHVZK — P, has Perfect SHVZK). Let us assume that
Py has Perfect SHVZK using simulator Sy. Then, for all pairs of interactive adversaries

A17-A2

P {(mu,w) € Ry and A (tr) =1

o + Setup(1), (u, w, p) + Ag(a)]
tr < (P*(o,u,w),V(o,u; p))

P {(U,u,w) € Ry and A;(tr) =1

o < Setup(17), (u, w, p) < A (o)
tr < Sa(o,u, p)

40

Proof. The weights are uniquely defined by the verifier’s challenge, so S1’s computa-
tion ensures that this relation holds. By the assumption that P; has perfect SHVZK,
the values produced by S; are indistinguishable from those in a valid proof produced
by an honest prover interacting with an honest verifier. Thus, special honest-verifier
zero-knowledge holds for P.

Lemma 6 (P, has Perfect SHVZK — P3 has Subversion ZK). Let us assume that P
has Perfect SHVZK using simulator Sy. Then, for all triples of interactive adversaries

A17A27A3

P {(J,u,w) € Ry and Ay (tr) =1 i (P* (0,1,), (o, u; p))

o« Setup(1?), (v, w, p) + Ag(a)]

g Ag(l)‘ s

_ (u
P |:(0’,’U,,U)) € Rgand Ay (tr) =1 11 < Sa(o, 11, p)

7wap)<—A2(U)}

Proof. If the CRS does not pass the CRSCheck algorithm, both an honest prover and S3
will return L. Otherwise, S3 invokes Sy, which by our assumption outputs transcripts
that are identically distributed to those from an honest prover. Thus, subversion zero-
knowledge holds for Ps.

D.3 Computational Witness-Extended Emulation

First, we state the following forking lemma that we will use in the proof of computa-
tional witness-extended emulation. It is build on the forking lemma by Bootle et al [24].
The main use of the forking lemma is that it abstracts any adversarial influence on the
distribution of the challenges. It states that if there exists an efficient algorithm that can
extract given any tree of challenges, then the protocol must have witness extended em-
ulation. This extractor does not care about the distribution of challenges other than that
it requires a certain number of distinct challenges per fork. We state an even more pow-
erful version of the forking lemma. Our adapted forking lemma allows the extraction
algorithm to have a small (negligble) failure probability on any transcript. Importantly
the probability is independent of the distribution of the challenges. This modification
enables us to have small failure probabilities, for example when verifying a proof for a
randomized functionality.

Theorem 4 (Forking Lemma). Let (Setup, P, V) be a (2k + 1)-move, public coin
interactive protocol. Let x be a witness extraction algorithm that succeeds with prob-
ability 1 — () for some negligible function u(\) in extracting a witness from any
(n1,...,ng)-tree of accepting transcripts in probabilistic polynomial time. Assume
that Hle n; is bounded above by a polynomial in the security parameter \. Then,
(Setup, P, V) has computational witness-extended emulation.

Proof. We extend the forking lemma by Bootle et al [24]. In the proof of the lemma
they built a tree finder algorithm which succeeds with overwhelming probability in
finding a tree of transcripts with suitable challenges. We slightly relax the lemma by
not requiring that the extractor x succeeds with probability 1 but instead only with

41

overwhelming probability. Note that this probability is independent of the challenges on
which the extractor forks! The relaxed forking lemma still holds because the probability
that the PPT witness extended emulation adversary (P*, A;, Az) can create any tree of
accepting transcripts on which y fails to extract is less than or equal to the total number
of transcripts the adversary produces times p(A). The total number of transcripts is
polynomial in A so the overall probability is still negligible.

In order to prove computational witness extended emulation, we construct an extrac-
tor x. Our construction closely follows the construction of the Bulletproofs extractor,
but with two main differences. The first is that x needs to use a factor of O(m) ad-
ditional valid transcripts with different challenges in order to extract vy,...,Vv,, and
Y1, - - -, ¥m along with the other intermediate values. The second difference is that once
x has extracted the description of the circuit, it must do an additional rewind of the
prover and verifier due to the adaptively-defined, randomized circuit. Using several c
challenges from the verifier, y is able to extract the witness. x inherits the additional
failure probability from the probabilistic verification of the statement itself. However
this failure probability is negligible and independent of the challenges on which y forks.
The forking lemma shows that x still implies witness extended emulation. We describe
the full construction of y below.

x runs the prover with n different values of y, Q + 1 different values of z, and
4m + 15 different values of x. x invokes the extractor Ximnerproduct t0 €xtract the inner
product vectors, as well as the extractor Xpolycommit t0 extract the coefficients of the
polynomial, of each of the transcripts. Because XimnerProduct USES O(nz) transcripts, and
XPolyCommit Uses O(m) transcripts, x produces O(n? - m) valid proof transcripts.

The extraction proceeds in three stages. First, X USes XnerProduct a1d XPolyCommit tO
extract the inner product identity. Next, x extracts the wire vectors for the multiplication
gates as well as the weights for the linear constraints. Finally, x extracts the witnesses
for the proof statement.

In the first stage, XinnerProduct €Xtracts a witness 1, r to the inner product argument
such that

h-gh (W) =P
(L,r) =1t.

Using 2m + 10 valid transcripts and 1, r for different x’s, x uses linear combinations of
the following equation

hrgh =AY AR Ay [T e wpwg g [we s sy
=1

=1

42

to compute vy, ...,v,, and 71, ..., 7, along with ag,ar,ap,sr,srg, 3, K, ®, A such
that

Ap =g*"h®
Ap =h*p?
Ap = g*oh"
Sk =g>h}
Sp =h®rp?

V; = h¥ih Vi€ [m]

If x can compute different representations of any of these values for any other set of

challenges (z,y, z), then we have a non-trivial discrete logarithm relation between in-

dependent generators g, h, h, which contradicts the discrete logarithm assumption.
Next, for all challenges (z, y, z), the following holds.

l=a; -z '4ap-272+y "o (zﬁf]rl “Wg)-a b dsp a3+ ZWW g (43)
i=1

m
r:y”oaRoxfy"%chrzﬁjl(WL~x+WR~x2)+y”osR~x3+ZVi~xi+3
i=1

If these equalities do not hold for all challenges and 1, r from the transcript, then
we have two distinct representations of the same group element using the independent
generators g, h, h, which is a non-trivial discrete logarithm relation. This contradicts
the discrete logarithm assumption.

. . 2
Next, x invokes Xpolycommit, defined in [24], to extract {t;, Ti};zt(m +2),20 such

that T; = géi hgi . XPolyCommit uses fixed values y, z and 2m -+ 5 transcripts with different
 challenges. Additionally, y can compute (p;, p;)!_; such that P; = g)"h5'Vi € [1,1].
For all transcripts, the following must hold.

m—+2
t= (2] Wp-p+d) +8(y,2)+ Y ta'
i=—(m+2),0

If this equality does not hold, we have a non-trivial discrete log relation between inde-
pendent generators g, h, which contradicts the discrete logarithm assumption. Then, for
all challenges of z, for all y, 2z, we have the following

m—+2)
Z tix* —p(x) =0
i=—(m+2)

where p(z) = Z?;tz(m_ﬂ) pixrt =<l(z),r(z) >.

Since the polynomial ¢(x) — p(z) is of degree 2m + 4 but has at least 2m + 5
roots (the = challenges), it must be the zero polynomial. Thus, ¢(xz) = (I(x), r(x)) and

43

to = po. This means that the following holds for all y, z challenges.
to = (ar,ar-y") — (a0, y") + (z(i] " w) +8(y, 2) = (23], Wp-p+d) +3(y, 2)

Now, using n(Q + 1) different transcripts (n different y challenges and (Q + 1)
different z challenges), we can infer the following.

aj car — ap

WL'aL+WR'aR+WO'ao+ZWVi'Vi:WP'Per

i=1

Thus, we have recovered the Hadamard product relation and the linear constraints that
represent our circuit.

Finally, x runs the prover with O(n) challenges ¢ and uses linear combinations of
the equations below to extract w.

WL = fWL (C) WR - wa (C) WO = wa (C)
Wy, = fWV,i (C)VZ € [Lm] Wp = fWP (C)
ar, = fa,(c,w) GZZ ag = fa(c,w) GZZ ao = fa,(c, W) EZ;

In this last step, x has two failure modes: first, it may compute a non-trivial dis-
crete log relation between independent generators independent generators g, h, h. This
occurs with negligible probability due to the discrete log hardness assumption. Second,
it may extract an invalid witness due to the probabilistic verification of the statement
itself.

Let us assume that the failure probability of the probabilistic verification is a neg-
ligible function €(\) and that the failure probability of the rest of the extraction is a
negligible function (). Since the extraction from the statement is the last step, by the
extended forking lemma, the total failure probability of x2 is p = €(A) - (), which is
negligible.

X rewinds the prover O(n® - Q - m) times. (is the number of linear constraints,
so @ < 2n. We assume that m = O(poly(n)). Thus, the number of transcripts is
polynomial in the security parameter \.

We have shown that extraction is efficient and returns a valid witness with over-
whelming probability, which proves that computational witness-extended emulation
holds.

44

